Kármán–Howarth equation

{{short description|Mathematical equation}}

In isotropic turbulence the Kármán–Howarth equation (after Theodore von Kármán and Leslie Howarth 1938), which is derived from the Navier–Stokes equations, is used to describe the evolution of non-dimensional longitudinal autocorrelation.De Karman, T., & Howarth, L. (1938). On the statistical theory of isotropic turbulence. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 164(917), 192–215.Monin, A. S., & Yaglom, A. M. (2013). Statistical fluid mechanics, volume II: Mechanics of turbulence (Vol. 2). Courier Corporation.Batchelor, G. K. (1953). The theory of homogeneous turbulence. Cambridge university press.Panchev, S. (2016). Random Functions and Turbulence: International Series of Monographs in Natural Philosophy (Vol. 32). Elsevier.Hinze, J. O. (1959). Turbulence, (1975). New York.

Mathematical description

Consider a two-point velocity correlation tensor for homogeneous turbulence

: R_{ij}(\mathbf{r},t) = \overline{u_i(\mathbf{x},t) u_j(\mathbf{x} + \mathbf{r},t)}.

For isotropic turbulence, this correlation tensor can be expressed in terms of two scalar functions, using the invariant theory of full rotation group, first derived by Howard P. Robertson in 1940,Robertson, H. P. (1940, April). The invariant theory of isotropic turbulence. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 36, No. 2, pp. 209–223). Cambridge University Press.

:R_{ij}(\mathbf{r},t) = u'^2 \left\{ [f(r,t)-g(r,t)]\frac{r_ir_j}{r^2} + g(r,t) \delta_{ij}\right\}, \quad f(r,t) = \frac{R_{11}}{u'^2}, \quad g(r,t) = \frac{R_{22}}{u'^2}

where u' is the root mean square turbulent velocity and u_1,\ u_2, \ u_3 are turbulent velocity in all three directions. Here, f(r) is the longitudinal correlation and g(r) is the lateral correlation of velocity at two different points. From continuity equation, we have

:\frac{\partial R_{ij}}{\partial r_j}=0 \quad \Rightarrow \quad g(r,t) = f(r,t) + \frac{r}{2} \frac{\partial}{\partial r}f(r,t)

Thus f(r,t) uniquely determines the two-point correlation function. Theodore von Kármán and Leslie Howarth derived the evolution equation for f(r,t) from Navier–Stokes equation as

:\frac \partial {\partial t} (u'^2 f) - \frac{u'^3}{r^4} \frac \partial {\partial r} (r^4 h) = \frac{2\nu u'^2}{r^4} \frac\partial {\partial r} \left(r^4 \frac{\partial f}{\partial r}\right)

where h(r,t) uniquely determines the triple correlation tensor

: S_{ij} = {} \frac{\partial }{\partial r_k} \left( \overline{u_i(\mathbf{x},t) u_k(\mathbf{x},t)u_j(\mathbf{x}+\mathbf{r},t)}-\overline{u_i(\mathbf{x},t) u_k(\mathbf{x}+\mathbf{r},t)u_j(\mathbf{x}+\mathbf{r},t)}\right).

Loitsianskii's invariant

L.G. Loitsianskii derived an integral invariant for the decay of the turbulence by taking the fourth moment of the Kármán–Howarth equation in 1939,Loitsianskii, L. G. (1939) Einige Grundgesetze einer isotropen turbulenten Strömung. Arbeiten d. Zentr. Aero-Hydrdyn. Inst., 440.Landau, L. D., & Lifshitz, E. M. (1959). Fluid Mechanics Pergamon. New York, 61. i.e.,

:\frac \partial {\partial t} \left(u'^2 \int_0^\infty r^4 f\ dr\right) = \left[2\nu u'^2 r^4 \frac{\partial f}{\partial r} + u'^3 r^4 h\right]_0^\infty.

If f(r) decays faster than r^{-3} as r\rightarrow\infty and also in this limit, if we assume that r^4 h vanishes, we have the quantity,

:\Lambda = u'^2 \int_0^\infty r^4 f\ dr = \mathrm{constant}

which is invariant. Lev Landau and Evgeny Lifshitz showed that this invariant is equivalent to conservation of angular momentum.Landau, L. D., & Lifshitz, E. M. (1987). Fluid mechanics. 1987. Course of Theoretical Physics. However, Ian Proudman and W.H. Reid showed that this invariant does not hold always since \lim_{r\rightarrow\infty} (r^4 h) is not in general zero, at least, in the initial period of the decay.Proudman, I., & Reid, W. H. (1954). On the decay of a normally distributed and homogeneous turbulent velocity field. Phil. Trans. R. Soc. Lond. A, 247(926), 163-189.Batchelor, G. K., & Proudman, I. (1956) The large-scale structure of homogeneous turbulence. Phil. Trans. R. Soc. Lond. A, 248(949), 369-405. In 1967, Philip Saffman showed that this integral depends on the initial conditions and the integral can diverge under certain conditions.Saffman, P. G. (1967). The large-scale structure of homogeneous turbulence. Journal of Fluid Mechanics, 27(3), 581-593.

Decay of turbulence

For the viscosity dominated flows, during the decay of turbulence, the Kármán–Howarth equation reduces to a heat equation once the triple correlation tensor is neglected, i.e.,

:\frac \partial {\partial t} (u'^2 f) = \frac{2\nu u'^2}{r^4} \frac\partial {\partial r} \left(r^4 \frac{\partial f}{\partial r}\right).

With suitable boundary conditions, the solution to above equation is given bySpiegel, E. A. (Ed.). (2010). The Theory of Turbulence: Subrahmanyan Chandrasekhar's 1954 Lectures (Vol. 810). Springer.

:f(r,t) = e^{-r^2/8\nu t}, \quad u'^2 = \mathrm{const.}\times (\nu t)^{-5/2}

so that,

:R_{ij}(r,t) \sim (\nu t)^{-5/2} e^{-r^2/8\nu t}.

See also

References

{{Reflist|30em}}

{{DEFAULTSORT:Karman-Howarth Equation}}

Category:Equations of fluid dynamics

Category:Fluid dynamics

Category:Turbulence