KAT6A
{{Short description|Protein-coding gene in the species Homo sapiens}}
{{Infobox_gene}}
K(lysine) acetyltransferase 6A (KAT6A), is an enzyme that, in humans, is encoded by the KAT6A gene.{{cite web | title = Entrez Gene: MYST3 MYST histone acetyltransferase (monocytic leukemia) 3| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7994}}{{cite journal |vauthors=Borrow J, Stanton VP, Andresen JM, Becher R, Behm FG, Chaganti RS, Civin CI, Disteche C, Dubé I, Frischauf AM, Horsman D, Mitelman F, Volinia S, Watmore AE, Housman DE | title = The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein | journal = Nat. Genet. | volume = 14 | issue = 1 | pages = 33–41 |date=September 1996 | pmid = 8782817 | doi = 10.1038/ng0996-33 | s2cid = 205342752 }} This gene is located on human chromosome 8, band 8p11.21. [https://www.ncbi.nlm.nih.gov/gene/7994 - KAT6A NCBI]
Protein function
The KAT6A proteinomim.org/entry/601408 contains two nuclear localization domains, a C2HC3 zinc finger and an acetyltransferase domain. This structure suggests that KAT6A functions as a chromatin-bound acetyltransferase. KAT6A is important for the proper development of hematopoietic stem cells.{{cite journal |vauthors=Yang XJ, Ullah M | title = MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells | journal = Oncogene | volume = 26 | issue = 37 | pages = 5408–19 |date=August 2007 | pmid = 17694082 | doi = 10.1038/sj.onc.1210609 | doi-access = free }}
Arboleda-Tham syndrome
{{Main|Autosomal dominant intellectual disability-craniofacial anomalies-cardiac defects syndrome}}
Arboleda-Tham syndrome (ARTHS),{{cite web | url=https://www.omim.org/entry/616268 | title=OMIM Entry - # 616268 - ARBOLEDA-THAM SYNDROME; ARTHS }} also referred to as KAT6A Syndrome (Arboleda-Tham Syndrome), is a rare autosomal dominant developmental disorder, caused by various missense, nonsense, and frameshift mutations in the KAT6A gene. The main characteristics of this syndrome are developmental delay, impaired intellectual development, speech delay, microcephaly, cardiac anomalies, and gastrointestinal complications. Kennedy, J., Goudie, D., Blair, E. et al. KAT6A Syndrome: genotype–phenotype correlation in 76 patients with pathogenic KAT6A variants. Genet Med 21, 850–860 (2019). https://doi.org/10.1038/s41436-018-0259-2
References
{{reflist}}
Further reading
{{refbegin | 2}}
- {{cite journal |vauthors=Schuler GD, Boguski MS, Stewart EA, etal |title=A gene map of the human genome. |journal=Science |volume=274 |issue= 5287 |pages= 540–6 |year= 1996 |pmid= 8849440 |doi=10.1126/science.274.5287.540 |bibcode=1996Sci...274..540S |s2cid=22619 }}
- {{cite journal |vauthors=Borrow J, Stanton VP, Andresen JM, etal |title=The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. |journal=Nat. Genet. |volume=14 |issue= 1 |pages= 33–41 |year= 1996 |pmid= 8782817 |doi= 10.1038/ng0996-33 |s2cid=205342752 }}
- {{cite journal |vauthors=Carapeti M, Aguiar RC, Goldman JM, Cross NC |title=A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. |journal=Blood |volume=91 |issue= 9 |pages= 3127–33 |year= 1998 |pmid= 9558366 |doi= 10.1182/blood.V91.9.3127|doi-access=free }}
- {{cite journal |vauthors=Chaffanet M, Gressin L, Preudhomme C, etal |title=MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). |journal=Genes Chromosomes Cancer |volume=28 |issue= 2 |pages= 138–44 |year= 2000 |pmid= 10824998 |doi=10.1002/(SICI)1098-2264(200006)28:2<138::AID-GCC2>3.0.CO;2-2 |s2cid=12096923 }}
- {{cite journal |vauthors=Champagne N, Pelletier N, Yang XJ |title=The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase. |journal=Oncogene |volume=20 |issue= 3 |pages= 404–9 |year= 2001 |pmid= 11313971 |doi= 10.1038/sj.onc.1204114 |doi-access= free }}
- {{cite journal |vauthors=Kitabayashi I, Aikawa Y, Nguyen LA, etal |title=Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein. |journal=EMBO J. |volume=20 |issue= 24 |pages= 7184–96 |year= 2002 |pmid= 11742995 |doi= 10.1093/emboj/20.24.7184 | pmc=125775 }}
- {{cite journal |vauthors=Pelletier N, Champagne N, Stifani S, Yang XJ |title=MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. |journal=Oncogene |volume=21 |issue= 17 |pages= 2729–40 |year= 2002 |pmid= 11965546 |doi= 10.1038/sj.onc.1205367 |doi-access= free }}
- {{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |bibcode=2002PNAS...9916899M |doi-access=free }}
- {{cite journal |vauthors=Deguchi K, Ayton PM, Carapeti M, etal |title=MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. |journal=Cancer Cell |volume=3 |issue= 3 |pages= 259–71 |year= 2003 |pmid= 12676584 |doi=10.1016/S1535-6108(03)00051-5 |doi-access=free }}
- {{cite journal |vauthors=Bristow CA, Shore P |title=Transcriptional regulation of the human MIP-1alpha promoter by RUNX1 and MOZ. |journal=Nucleic Acids Res. |volume=31 |issue= 11 |pages= 2735–44 |year= 2003 |pmid= 12771199 |doi=10.1093/nar/gkg401 | pmc=156734 }}
- {{cite journal |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |doi-access= free }}
- {{cite journal |vauthors=Kindle KB, Troke PJ, Collins HM, etal |title=MOZ-TIF2 inhibits transcription by nuclear receptors and p53 by impairment of CBP function. |journal=Mol. Cell. Biol. |volume=25 |issue= 3 |pages= 988–1002 |year= 2005 |pmid= 15657427 |doi= 10.1128/MCB.25.3.988-1002.2005 | pmc=544007 }}
- {{cite journal |vauthors=Cereseto A, Manganaro L, Gutierrez MI, etal |title=Acetylation of HIV-1 integrase by p300 regulates viral integration. |journal=EMBO J. |volume=24 |issue= 17 |pages= 3070–81 |year= 2005 |pmid= 16096645 |doi= 10.1038/sj.emboj.7600770 | pmc=1201351 }}
- {{cite journal |vauthors=Kimura K, Wakamatsu A, Suzuki Y, etal |title=Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. |journal=Genome Res. |volume=16 |issue= 1 |pages= 55–65 |year= 2006 |pmid= 16344560 |doi= 10.1101/gr.4039406 | pmc=1356129 }}
- {{cite journal |vauthors=Collins HM, Kindle KB, Matsuda S, etal |title=MOZ-TIF2 alters cofactor recruitment and histone modification at the RARbeta2 promoter: differential effects of MOZ fusion proteins on CBP- and MOZ-dependent activators. |journal=J. Biol. Chem. |volume=281 |issue= 25 |pages= 17124–33 |year= 2006 |pmid= 16613851 |doi= 10.1074/jbc.M602633200 |doi-access= free }}
- {{cite journal |vauthors=Lim J, Hao T, Shaw C, etal |title=A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. |journal=Cell |volume=125 |issue= 4 |pages= 801–14 |year= 2006 |pmid= 16713569 |doi= 10.1016/j.cell.2006.03.032 |s2cid=13709685 |doi-access=free }}
- {{cite journal |vauthors=Kim SC, Sprung R, Chen Y, etal |title=Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. |journal=Mol. Cell |volume=23 |issue= 4 |pages= 607–18 |year= 2006 |pmid= 16916647 |doi= 10.1016/j.molcel.2006.06.026 |doi-access= free }}
- {{cite journal |vauthors=Olsen JV, Blagoev B, Gnad F, etal |title=Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. |journal=Cell |volume=127 |issue= 3 |pages= 635–48 |year= 2006 |pmid= 17081983 |doi= 10.1016/j.cell.2006.09.026 |s2cid=7827573 |doi-access=free }}
- {{cite journal |vauthors=Topper M, Luo Y, Zhadina M, etal |title=Posttranslational acetylation of the human immunodeficiency virus type 1 integrase carboxyl-terminal domain is dispensable for viral replication. |journal=J. Virol. |volume=81 |issue= 6 |pages= 3012–7 |year= 2007 |pmid= 17182677 |doi= 10.1128/JVI.02257-06 | pmc=1865993 }}
{{refend}}
{{PDB Gallery|geneid=7994}}
{{gene-8-stub}}