Kaktovik numerals#In Unicode

{{short description|Inuit numeral system for a base-20 counting system}}

{{also|Kaktovik Numerals (Unicode block)}}

{{distinguish|Iñupiaq numerals}}

{{good article}}

{{Use mdy dates|date=March 2021}}

File:Kaktovik digit table.svg

{{Numeral systems}}

{{Contains special characters

| special = uncommon Unicode characters

| fix = Help:Multilingual support#Kaktovik numerals

| image = Replacement character.svg

| link = Specials (Unicode block)#Replacement character

| alt =

| compact = yes

}}

The Kaktovik numerals or Kaktovik Iñupiaq numerals{{sfn|MacLean|2012}} are a base-20 system of numerical digits created by Alaskan Iñupiat. They are visually iconic, with shapes that indicate the number being represented.

The Iñupiaq language has a base-20 numeral system, as do the other Eskimo–Aleut languages of Alaska and Canada (and formerly Greenland). Arabic numerals, which were designed for a base-10 system, are inadequate for Iñupiaq and other Inuit languages. To remedy this problem, students in Kaktovik, Alaska, invented a base-20 numeral notation in 1994, which has spread among the Alaskan Iñupiat and has been considered for use in Canada.

System

{{also|Iñupiaq numerals}}

Iñupiaq, like other Inuit languages, has a base-20 counting system with a sub-base of 5 (a quinary-vigesimal system). That is, quantities are counted in scores (as in Welsh and French {{lang|fr|quatre-vingts}} 'eighty'), with intermediate numerals for 5, 10, and 15. Thus 78 is identified as three score fifteen-three.{{sfn|MacLean|2014|p=840 ff}}

The Kaktovik digits graphically reflect the lexical structure of the Iñupiaq numbering system.{{sfn|MacLean|2014|p=832}}

class="wikitable" style="vertical-align: bottom;"

|+ The twenty digits

! 0

| {{Kaktovik digit|0|x32px}}

| {{wikt-lang|ik|kisitchisaġvik}}

! 5

| {{Kaktovik digit|5|x32px}}

| {{wikt-lang|ik|tallimat}}

! 10

| {{Kaktovik digit|10|x32px}}

| {{wikt-lang|ik|qulit}}

! 15

| {{Kaktovik digit|15|x32px}}

| {{wikt-lang|ik|akimiaq}}

1

| {{Kaktovik digit|1|x32px}}

| {{wikt-lang|ik|atausiq}}

! 6

| {{Kaktovik digit|6|x32px}}

| {{wikt-lang|ik|itchaksrat}}

! 11

| {{Kaktovik digit|11|x32px}}

| {{wikt-lang|ik|qulit atausiq}}

! 16

| {{Kaktovik digit|16|x32px}}

| {{wikt-lang|ik|akimiaq atausiq}}

2

| {{Kaktovik digit|2|x32px}}

| {{wikt-lang|ik|malġuk}}

! 7

| {{Kaktovik digit|7|x32px}}

| {{wikt-lang|ik|tallimat malġuk}}

! 12

| {{Kaktovik digit|12|x32px}}

| {{wikt-lang|ik|qulit malġuk}}

! 17

| {{Kaktovik digit|17|x32px}}

| {{wikt-lang|ik|akimiaq malġuk}}

3

| {{Kaktovik digit|3|x32px}}

| {{wikt-lang|ik|piŋasut}}

! 8

| {{Kaktovik digit|8|x32px}}

| {{wikt-lang|ik|tallimat piŋasut}}

! 13

| {{Kaktovik digit|13|x32px}}

| {{wikt-lang|ik|qulit piŋasut}}

! 18

| {{Kaktovik digit|18|x32px}}

| {{wikt-lang|ik|akimiaq piŋasut}}

4

| {{Kaktovik digit|4|x32px}}

| {{wikt-lang|ik|sisamat}}

! 9

| {{Kaktovik digit|9|x32px}}

| {{wikt-lang|ik|quliŋŋuġutaiḷaq}}

! 14

| {{Kaktovik digit|14|x32px}}

| {{wikt-lang|ik|akimiaġutaiḷaq}}

! 19

| {{Kaktovik digit|19|x32px}}

| {{wikt-lang|ik|iñuiññaġutaiḷaq}}

Larger numbers are composed of these digits in a positional notation:

class="wikitable"
Decimal

! colspan="2" | Vigesimal

Arabic

! Arabic

! Kaktovik

20

| 1020

| {{Kaktovik digit|1}}{{Kaktovik digit|0}}

40

| 2020

| {{Kaktovik digit|2}}{{Kaktovik digit|0}}

400

| 10020

| {{Kaktovik digit|1}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}

800

| 20020

| {{Kaktovik digit|2}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}

=Values=

In the following table are the decimal values of the Kaktovik digits up to three places to the left and to the right of the units' place.{{sfn|MacLean|2014|p=832}}

class="wikitable" style="text-align:center;"

|+Decimal values of Kaktovik numbers

!n

!n{{times}}203

!n{{times}}202

!n{{times}}201

!n{{times}}200

!n{{times}}20−1

!n{{times}}20−2

!n{{times}}20−3

1

|{{Kaktovik digit|1}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
8,000

|{{Kaktovik digit|1}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
400

|{{Kaktovik digit|1}}{{Kaktovik digit|0}}
20

|{{Kaktovik digit|1}}
1

|{{Kaktovik digit|0}}.{{Kaktovik digit|1}}
0.05

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|1}}
0.0025

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|1}}
{{gaps|0.000|125}}

2

|{{Kaktovik digit|2}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
16,000

|{{Kaktovik digit|2}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
800

|{{Kaktovik digit|2}}{{Kaktovik digit|0}}
40

|{{Kaktovik digit|2}}
2

|{{Kaktovik digit|0}}.{{Kaktovik digit|2}}
0.1

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|2}}
0.005

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|2}}
{{gaps|0.000|25}}

3

|{{Kaktovik digit|3}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
24,000

|{{Kaktovik digit|3}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
1,200

|{{Kaktovik digit|3}}{{Kaktovik digit|0}}
60

|{{Kaktovik digit|3}}
3

|{{Kaktovik digit|0}}.{{Kaktovik digit|3}}
0.15

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|3}}
0.0075

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|3}}
{{gaps|0.000|375}}

4

|{{Kaktovik digit|4}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
32,000

|{{Kaktovik digit|4}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
1,600

|{{Kaktovik digit|4}}{{Kaktovik digit|0}}
80

|{{Kaktovik digit|4}}
4

|{{Kaktovik digit|0}}.{{Kaktovik digit|4}}
0.2

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|4}}
0.01

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|4}}
{{gaps|0.000|5}}

5

|{{Kaktovik digit|5}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
40,000

|{{Kaktovik digit|5}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
2,000

|{{Kaktovik digit|5}}{{Kaktovik digit|0}}
100

|{{Kaktovik digit|5}}
5

|{{Kaktovik digit|0}}.{{Kaktovik digit|5}}
0.25

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|5}}
0.0125

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|5}}
{{gaps|0.000|625}}

6

|{{Kaktovik digit|6}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
48,000

|{{Kaktovik digit|6}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
2,400

|{{Kaktovik digit|6}}{{Kaktovik digit|0}}
120

|{{Kaktovik digit|6}}
6

|{{Kaktovik digit|0}}.{{Kaktovik digit|6}}
0.3

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|6}}
0.015

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|6}}
{{gaps|0.000|75}}

7

|{{Kaktovik digit|7}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
56,000

|{{Kaktovik digit|7}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
2,800

|{{Kaktovik digit|7}}{{Kaktovik digit|0}}
140

|{{Kaktovik digit|7}}
7

|{{Kaktovik digit|0}}.{{Kaktovik digit|7}}
0.35

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|7}}
0.0175

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|7}}
{{gaps|0.000|875}}

8

|{{Kaktovik digit|8}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
64,000

|{{Kaktovik digit|8}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
3,200

|{{Kaktovik digit|8}}{{Kaktovik digit|0}}
160

|{{Kaktovik digit|8}}
8

|{{Kaktovik digit|0}}.{{Kaktovik digit|8}}
0.4

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|8}}
0.02

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|8}}
0.001

9

|{{Kaktovik digit|9}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
72,000

|{{Kaktovik digit|9}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
3,600

|{{Kaktovik digit|9}}{{Kaktovik digit|0}}
180

|{{Kaktovik digit|9}}
9

|{{Kaktovik digit|0}}.{{Kaktovik digit|9}}
0.45

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|9}}
0.0225

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|9}}
{{gaps|0.001|125}}

10

|{{Kaktovik digit|10}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
80,000

|{{Kaktovik digit|10}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
4,000

|{{Kaktovik digit|10}}{{Kaktovik digit|0}}
200

|{{Kaktovik digit|10}}
10

|{{Kaktovik digit|0}}.{{Kaktovik digit|10}}
0.5

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|10}}
0.025

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|10}}
{{gaps|0.001|25}}

11

|{{Kaktovik digit|11}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
88,000

|{{Kaktovik digit|11}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
4,400

|{{Kaktovik digit|11}}{{Kaktovik digit|0}}
220

|{{Kaktovik digit|11}}
11

|{{Kaktovik digit|0}}.{{Kaktovik digit|11}}
0.55

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|11}}
0.0275

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|11}}
{{gaps|0.001|375}}

12

|{{Kaktovik digit|12}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
96,000

|{{Kaktovik digit|12}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
4,800

|{{Kaktovik digit|12}}{{Kaktovik digit|0}}
240

|{{Kaktovik digit|12}}
12

|{{Kaktovik digit|0}}.{{Kaktovik digit|12}}
0.6

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|12}}
0.03

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|12}}
{{gaps|0.001|5}}

13

|{{Kaktovik digit|13}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
104,000

|{{Kaktovik digit|13}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
5,200

|{{Kaktovik digit|13}}{{Kaktovik digit|0}}
260

|{{Kaktovik digit|13}}
13

|{{Kaktovik digit|0}}.{{Kaktovik digit|13}}
0.65

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|13}}
0.0325

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|13}}
{{gaps|0.001|625}}

14

|{{Kaktovik digit|14}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
112,000

|{{Kaktovik digit|14}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
5,600

|{{Kaktovik digit|14}}{{Kaktovik digit|0}}
280

|{{Kaktovik digit|14}}
14

|{{Kaktovik digit|0}}.{{Kaktovik digit|14}}
0.7

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|14}}
0.035

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|14}}
{{gaps|0.001|75}}

15

|{{Kaktovik digit|15}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
120,000

|{{Kaktovik digit|15}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
6,000

|{{Kaktovik digit|15}}{{Kaktovik digit|0}}
300

|{{Kaktovik digit|15}}
15

|{{Kaktovik digit|0}}.{{Kaktovik digit|15}}
0.75

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|15}}
0.0375

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|15}}
{{gaps|0.001|875}}

16

|{{Kaktovik digit|16}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
128,000

|{{Kaktovik digit|16}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
6,400

|{{Kaktovik digit|16}}{{Kaktovik digit|0}}
320

|{{Kaktovik digit|16}}
16

|{{Kaktovik digit|0}}.{{Kaktovik digit|16}}
0.8

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|16}}
0.04

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|16}}
0.002

17

|{{Kaktovik digit|17}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
136,000

|{{Kaktovik digit|17}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
6,800

|{{Kaktovik digit|17}}{{Kaktovik digit|0}}
340

|{{Kaktovik digit|17}}
17

|{{Kaktovik digit|0}}.{{Kaktovik digit|17}}
0.85

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|17}}
0.0425

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|17}}
{{gaps|0.002|125}}

18

|{{Kaktovik digit|18}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
144,000

|{{Kaktovik digit|18}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
7,200

|{{Kaktovik digit|18}}{{Kaktovik digit|0}}
360

|{{Kaktovik digit|18}}
18

|{{Kaktovik digit|0}}.{{Kaktovik digit|18}}
0.9

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|18}}
0.045

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|18}}
{{gaps|0.002|25}}

19

|{{Kaktovik digit|19}},{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
152,000

|{{Kaktovik digit|19}}{{Kaktovik digit|0}}{{Kaktovik digit|0}}
7,600

|{{Kaktovik digit|19}}{{Kaktovik digit|0}}
380

|{{Kaktovik digit|19}}
19

|{{Kaktovik digit|0}}.{{Kaktovik digit|19}}
0.95

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|19}}
0.0475

|{{Kaktovik digit|0}}.{{Kaktovik digit|0}}{{Kaktovik digit|0}}{{Kaktovik digit|19}}
{{gaps|0.002|375}}

Origin

File:Map of Alaska highlighting North Slope Borough.svg

The numerals began as an enrichment activity in 1994, when, during a math class exploring binary numbers at Harold Kaveolook middle school on Barter Island Kaktovik, Alaska,{{sfn|Bartley|1997}} students noted that their language used a base-20 system.

They found that, when they tried to write numbers or do arithmetic with Arabic numerals, they did not have enough symbols to represent the Iñupiaq numbers.{{sfn|Bartley|2002}}

They first addressed this lack by creating ten extra symbols, but found these were difficult to remember. The small middle school had only nine students so the entire school was able to work together to create a base-20 notation. Their teacher, William Bartley, guided them.{{sfn|Bartley|2002}}

After brainstorming, the students came up with several qualities that an ideal system would have:

  1. Visual simplicity: The symbols should be "easy to remember."
  2. Iconicity: There should be a "clear relationship between the symbols and their meanings."
  3. Efficiency: It should be "easy to write" the symbols, and they should be able to be "written quickly" without lifting the pencil from the paper.
  4. Distinctiveness: They should "look very different from Arabic numerals," so there would not be any confusion between notation in the two systems.
  5. Aesthetics: They should be pleasing to look at.{{sfn|Bartley|2002}}

In base-20 positional notation, the number twenty is written with the digit for 1 followed by the digit for 0. The Iñupiaq language does not have a word for zero, and the students decided that the Kaktovik digit 0 should look like crossed arms, meaning that nothing was being counted.{{sfn|Bartley|2002}}

When the middle-school pupils began to teach their new system to younger students in the school, the younger students tended to squeeze the numbers down to fit inside the same-sized block. In this way, they created an iconic notation with the sub-base of 5 forming the upper part of the digit, and the remainder forming the lower part. This proved visually helpful in doing arithmetic.{{sfn|Bartley|2002}}

Computation

=Abacus=

The students built base-20 abacuses in the school workshop.{{sfn|Bartley|1997}}{{sfn|Bartley|2002}} These were initially intended to help the conversion from decimal to base-20 and vice versa, but the students found their design lent itself quite naturally to arithmetic in base-20. The upper section of their abacus had three beads in each column for the values of the sub-base of 5, and the lower section had four beads in each column for the remaining units.{{sfn|Bartley|2002}}

=Arithmetic=

An advantage the students discovered of their new system was that arithmetic was easier than with the Arabic numerals.{{sfn|Bartley|2002}} Adding two digits together would look like their sum. For example,

: 2 + 2 = 4

: {{Kaktovik digit|2}} + {{Kaktovik digit|2}} = {{Kaktovik digit|4}}

It was even easier for subtraction: one could simply look at the number and remove the appropriate number of strokes to get the answer.{{sfn|Bartley|2002}} For example,

: 4 − 1 = 3

: {{Kaktovik digit|4}} − {{Kaktovik digit|1}} = {{Kaktovik digit|3}}

Another advantage came in doing long division. The visual aspects and the sub-base of five made long division with large dividends almost as easy as short division, as it didn't require writing in sub-tables for multiplying and subtracting the intermediate steps.{{sfn|Bartley|1997}} The students could keep track of the strokes of the intermediate steps with colored pencils in an elaborated system of chunking.{{sfn|Bartley|2002}}

{{Gallery

|title= Examples of long division

|width=300

|height=80

|File:Kaktovik long division (simple).svg

|Simple long division

{{interlinear|spacing=0.5|italics1=no|glossing2=no

|30,56110 ÷ 6110 {{=}} 50110

|3,G8120 ÷ 3120 {{=}} 15120

|{{Kaktovik digit|3}}{{Kaktovik digit|16}}{{Kaktovik digit|8}}{{Kaktovik digit|1}} ÷ {{Kaktovik digit|3}}{{Kaktovik digit|1}} {{=}} {{Kaktovik digit|1}}{{Kaktovik digit|5}}{{Kaktovik digit|1}}

|}}

(black) The divisor {{Kaktovik digit|3}}{{Kaktovik digit|1}} goes into the first two digits of the dividend one time, for a {{Kaktovik digit|1}} one in the quotient.

(red) {{Kaktovik digit|3}}{{Kaktovik digit|1}} fits into the next two digits once (if rotated), so the next digit in the quotient is a rotated one (that is, a {{Kaktovik digit|5}} five).

(blue) The last two digits are matched once for a final {{Kaktovik digit|1}} one in the quotient.

|File:Kaktovik long division (chunked).svg

|Long division with more chunking

{{interlinear|spacing=0.5|italics1=no|glossing2=no

|46,349,22610 ÷ 2,82610 {{=}} 16,40110

|E9D,D1620 ÷ 71620 {{=}} 2,10120

|{{Kaktovik digit|14}}{{Kaktovik digit|9}}{{Kaktovik digit|13}}{{Kaktovik digit|13}}{{Kaktovik digit|1}}{{Kaktovik digit|6}} ÷ {{Kaktovik digit|7}}{{Kaktovik digit|1}}{{Kaktovik digit|6}} {{=}} {{Kaktovik digit|2}}{{Kaktovik digit|1}}{{Kaktovik digit|0}}{{Kaktovik digit|1}}

|}}

(black and red) The divisor {{Kaktovik digit|7}}{{Kaktovik digit|1}}{{Kaktovik digit|6}} goes into the first three digits of the dividend twice (once in black and once in red), for a two in the quotient.

(blue) {{Kaktovik digit|7}}{{Kaktovik digit|1}}{{Kaktovik digit|6}} goes into the next three digits once, for a {{Kaktovik digit|1}} one in the quotient.

(grey) {{Kaktovik digit|7}}{{Kaktovik digit|1}}{{Kaktovik digit|6}} does not fit into the next three digits, for a {{Kaktovik digit|0}} zero in the quotient.

(green) {{Kaktovik digit|7}}{{Kaktovik digit|1}}{{Kaktovik digit|6}} fits into the remaining digits once, for a final {{Kaktovik digit|1}} one in the quotient.

}}

A simplified multiplication table can be made by first finding the products of each base digit, then the products of the bases and the sub-bases, and finally the product of each sub-base:

{{col-begin}}

{{col-break}}

class="wikitable" style="vertical-align: bottom;"

!{{times}}

!{{Kaktovik digit|1}}
1

!{{Kaktovik digit|2}}
2

!{{Kaktovik digit|3}}
3

!{{Kaktovik digit|4}}
4

1 {{Kaktovik digit|1}}

|{{Kaktovik digit|1}}

|{{Kaktovik digit|2}}

|{{Kaktovik digit|3}}

|{{Kaktovik digit|4}}

2 {{Kaktovik digit|2}}

|{{Kaktovik digit|2}}

|{{Kaktovik digit|4}}

|{{Kaktovik digit|6}}

|{{Kaktovik digit|8}}

3 {{Kaktovik digit|3}}

|{{Kaktovik digit|3}}

|{{Kaktovik digit|6}}

|{{Kaktovik digit|9}}

|{{Kaktovik digit|12}}

4 {{Kaktovik digit|4}}

|{{Kaktovik digit|4}}

|{{Kaktovik digit|8}}

|{{Kaktovik digit|12}}

|{{Kaktovik digit|16}}

{{col-break}}

class="wikitable" style="vertical-align: bottom;"

!{{times}}

!{{Kaktovik digit|1}}
1

!{{Kaktovik digit|2}}
2

!{{Kaktovik digit|3}}
3

!{{Kaktovik digit|4}}
4

5 {{Kaktovik digit|5}}

|{{Kaktovik digit|5}}

|{{Kaktovik digit|10}}

|{{Kaktovik digit|15}}

|{{Kaktovik digit|1}}{{Kaktovik digit|0}}

10 {{Kaktovik digit|10}}

|{{Kaktovik digit|10}}

|{{Kaktovik digit|1}}{{Kaktovik digit|0}}

|{{Kaktovik digit|1}}{{Kaktovik digit|10}}

|{{Kaktovik digit|2}}{{Kaktovik digit|0}}

15 {{Kaktovik digit|15}}

|{{Kaktovik digit|15}}

|{{Kaktovik digit|1}}{{Kaktovik digit|10}}

|{{Kaktovik digit|2}}{{Kaktovik digit|5}}

|{{Kaktovik digit|3}}{{Kaktovik digit|0}}

{{col-break}}

class="wikitable" style="vertical-align: bottom;"

!{{times}}

!{{Kaktovik digit|5}}
5

!{{Kaktovik digit|10}}
10

!{{Kaktovik digit|15}}
15

5 {{Kaktovik digit|5}}

|{{Kaktovik digit|1}}{{Kaktovik digit|5}}

|{{Kaktovik digit|2}}{{Kaktovik digit|10}}

|{{Kaktovik digit|3}}{{Kaktovik digit|15}}

10 {{Kaktovik digit|10}}

|{{Kaktovik digit|2}}{{Kaktovik digit|10}}

|{{Kaktovik digit|5}}{{Kaktovik digit|0}}

|{{Kaktovik digit|7}}{{Kaktovik digit|10}}

15 {{Kaktovik digit|15}}

|{{Kaktovik digit|3}}{{Kaktovik digit|15}}

|{{Kaktovik digit|7}}{{Kaktovik digit|10}}

|{{Kaktovik digit|11}}{{Kaktovik digit|5}}

{{col-end}}

These tables are functionally complete for multiplication operations using Kaktovik numerals, but for factors with both bases and sub-bases it is necessary to first disassociate them:

: 6 * 3 = 18

: {{Kaktovik digit|6}} * {{Kaktovik digit|3}} = ({{Kaktovik digit|1}} * {{Kaktovik digit|3}}) + ({{Kaktovik digit|5}} * {{Kaktovik digit|3}}) = {{Kaktovik digit|18}}

In the above example the factor {{Kaktovik digit|6}} (6) is not found in the table, but its components, {{Kaktovik digit|1}} (1) and {{Kaktovik digit|5}} (5), are.

Legacy

The Kaktovik numerals have gained wide use among Alaskan Iñupiat. They have been introduced into language-immersion programs and have helped revive base-20 counting, which had been falling into disuse among the Iñupiat due to the prevalence of the base-10 system in English-medium schools.{{sfn|Bartley|1997}}{{sfn|Bartley|2002}}

When the Kaktovik middle school students who invented the system were graduated to the high school in Barrow, Alaska (now renamed Utqiaġvik), in 1995, they took their invention with them. They were permitted to teach it to students at the local middle school, and the local community Iḷisaġvik College added an Inuit mathematics course to its catalog.{{sfn|Bartley|2002}}

In 1996, the Commission on Inuit History Language and Culture officially adopted the numerals,{{sfn|Bartley|2002}} and in 1998 the Inuit Circumpolar Council in Canada recommended the development and use of the Kaktovik numerals in that country.{{sfn|ICC|1998}}

Significance

Scores on the California Achievement Test in mathematics for the Kaktovik middle school improved dramatically in 1997 compared to previous years. Before the introduction of the new numerals, the average score had been in the 20th percentile; after their introduction, scores rose to above the national average. It is theorized that being able to work in both base-10 and base-20 might have comparable advantages to those bilingual students have from engaging in two ways of thinking about the world.{{sfn|Bartley|2002}}

The development of an indigenous numeral system helps to demonstrate to Alaskan-native students that math is embedded in their culture and language rather than being imparted by western culture. This is a shift from a previously commonly held view that mathematics was merely a necessity to get into a college or university. Non-native students can see a practical example of a different world view, a part of ethnomathematics.{{sfn|Engblom-Bradley|2009|p=[{{google books URL|1qe5vzMqJW0C|p=244}} 244]}}

In Unicode

{{main|Kaktovik Numerals (Unicode block)}}

The Kaktovik numerals were added to the Unicode Standard in September, 2022, with the release of version {{unicode version|version=15}}. Several fonts support this block.

{{Unicode chart Kaktovik Numerals}}

class="wikitable nounderlines" style="border-collapse:collapse;background:#FFFFFF;font-size:large;text-align:center"

|+Graphical display of Kaktovik Numerals
[https://www.unicode.org/charts/PDF/U1D2C0.pdf Official Unicode Consortium code chart] (PDF)

style="background:#F8F8F8;font-size:small"

| style="width:45pt" |

| style="width:20pt" | 0

| style="width:20pt" | 1

| style="width:20pt" | 2

| style="width:20pt" | 3

| style="width:20pt" | 4

| style="width:20pt" | 5

| style="width:20pt" | 6

| style="width:20pt" | 7

| style="width:20pt" | 8

| style="width:20pt" | 9

| style="width:20pt" | A

| style="width:20pt" | B

| style="width:20pt" | C

| style="width:20pt" | D

| style="width:20pt" | E

| style="width:20pt" | F

style="background:#F8F8F8;font-size:small" | U+1D2Cx

| title="U+1D2C0: KAKTOVIK NUMERAL ZERO" | {{Kaktovik digit|0}}

| title="U+1D2C1: KAKTOVIK NUMERAL ONE" | {{Kaktovik digit|1}}

| title="U+1D2C2: KAKTOVIK NUMERAL TWO" | {{Kaktovik digit|2}}

| title="U+1D2C3: KAKTOVIK NUMERAL THREE" | {{Kaktovik digit|3}}

| title="U+1D2C4: KAKTOVIK NUMERAL FOUR" | {{Kaktovik digit|4}}

| title="U+1D2C5: KAKTOVIK NUMERAL FIVE" | {{Kaktovik digit|5}}

| title="U+1D2C6: KAKTOVIK NUMERAL SIX" | {{Kaktovik digit|6}}

| title="U+1D2C7: KAKTOVIK NUMERAL SEVEN" | {{Kaktovik digit|7}}

| title="U+1D2C8: KAKTOVIK NUMERAL EIGHT" | {{Kaktovik digit|8}}

| title="U+1D2C9: KAKTOVIK NUMERAL NINE" | {{Kaktovik digit|9}}

| title="U+1D2CA: KAKTOVIK NUMERAL TEN" | {{Kaktovik digit|10}}

| title="U+1D2CB: KAKTOVIK NUMERAL ELEVEN" | {{Kaktovik digit|11}}

| title="U+1D2CC: KAKTOVIK NUMERAL TWELVE" | {{Kaktovik digit|12}}

| title="U+1D2CD: KAKTOVIK NUMERAL THIRTEEN" | {{Kaktovik digit|13}}

| title="U+1D2CE: KAKTOVIK NUMERAL FOURTEEN" | {{Kaktovik digit|14}}

| title="U+1D2CF: KAKTOVIK NUMERAL FIFTEEN" | {{Kaktovik digit|15}}

style="background:#F8F8F8;font-size:small" lang="mul" | U+1D2Dx

| title="U+1D2D0: KAKTOVIK NUMERAL SIXTEEN" | {{Kaktovik digit|16}}

| title="U+1D2D1: KAKTOVIK NUMERAL SEVENTEEN" | {{Kaktovik digit|17}}

| title="U+1D2D2: KAKTOVIK NUMERAL EIGHTEEN" | {{Kaktovik digit|18}}

| title="U+1D2D3: KAKTOVIK NUMERAL NINETEEN" | {{Kaktovik digit|19}}

| title="Reserved" style="background-color:#CCCCCC;" |

| title="Reserved" style="background-color:#CCCCCC;" |

| title="Reserved" style="background-color:#CCCCCC;" |

| title="Reserved" style="background-color:#CCCCCC;" |

| title="Reserved" style="background-color:#CCCCCC;" |

| title="Reserved" style="background-color:#CCCCCC;" |

| title="Reserved" style="background-color:#CCCCCC;" |

| title="Reserved" style="background-color:#CCCCCC;" |

| title="Reserved" style="background-color:#CCCCCC;" |

| title="Reserved" style="background-color:#CCCCCC;" |

| title="Reserved" style="background-color:#CCCCCC;" |

| title="Reserved" style="background-color:#CCCCCC;" |

See also

  • Maya numerals, a quinary-vigesimal system from another American culture

References

{{reflist|20em}}

{{Refbegin}}

  • {{cite journal

|first=Wm. Clark |last=Bartley

|date=January–February 1997

|title=Making the Old Way Count

|journal=Sharing Our Pathways

|volume=2

|issue=1

|pages=12–13

|url=http://www.ankn.uaf.edu/sop/SOPv2i1.pdf

|url-status=live

|archive-url=https://web.archive.org/web/20130625225547/http://ankn.uaf.edu/SOP/SOPv2i1.pdf

|archive-date=June 25, 2013

|access-date=February 27, 2017

}}

  • {{cite conference

|ref={{SfnRef|ICC|1998}}

|title=Resolution 89-09: Regarding Kaktovik Numerals

|date=July 1998

|conference=Inuit Circumpolar Conference

|location=Nuuk, Greenland

|url=http://www.inuitcircumpolar.com/resolutions7.html

|url-status=dead

|archive-url=https://web.archive.org/web/20170202234626/http://www.inuitcircumpolar.com/resolutions7.html

|archive-date=February 2, 2017

}}

  • {{cite book

|first=William Clark |last=Bartley

|year=2002

|chapter=Counting on tradition: Iñupiaq numbers in the school setting

|pages=225–236

|title=Perspectives on Indigenous People of North America

|editor1-first=Judith Elaine |editor1-last=Hankes

|editor2-first=Gerald R. |editor2-last=Fast

|isbn=978-0873535069

|series=Changing the Faces of Mathematics

|publisher=National Council of Teachers of Mathematics

|location=Reston, Virginia

|url=https://archive.org/details/isbn_9780873535069/page/225

|access-date=April 17, 2024

}}

  • {{cite book

|first=Claudette |last=Engblom-Bradley

|year=2009

|contribution=Seeing mathematics with Indian eyes

|pages=237–245

|title=The Alaska Native Reader: History, Culture, Politics

|editor-first=Maria Sháa Tláa |editor-last= Williams

|publisher=Duke University Press

|doi=10.1215/9780822390831-025

|isbn=978-0-8223-4465-0

}}

  • {{cite book

|first = Edna Ahgeak |last = MacLean |author-link = Edna Ahgeak MacLean

|date = 2012

|title = Iñupiatun Uqaluit Taniktun Sivunniuġutiŋit

|trans-title = North Slope Iñupiaq to English Dictionary

|url = https://uafanlc.alaska.edu/Online/IN(N)971M2011/inupiaq_dictionary_2012-05-14-sm.pdf

|url-status = dead

|archive-url = https://web.archive.org/web/20211210214046/https://uafanlc.alaska.edu/Online/IN(N)971M2011/inupiaq_dictionary_2012-05-14-sm.pdf

|archive-date = Dec 10, 2021

}}

  • {{cite book

|first = Edna Ahgeak |last = MacLean |author-link = Edna Ahgeak MacLean

|date = 2014

|title = Iñupiatun Uqaluit Taniktun Sivuninit

|trans-title = Iñupiaq to English Dictionary

|publisher = University of Alaska Press

|jstor = jj.1176788

}}

{{Refend}}

Further reading

  • {{cite web

|first=Amory |last=Tillinghast-Raby

|date=June 2023

|title=A Number System Invented by Inuit Schoolchildren Will Make Its Silicon Valley Debut

|work=Scientific American Magazine

|volume=328 |number=6

|url=https://www.scientificamerican.com/article/a-number-system-invented-by-inuit-schoolchildren-will-make-its-silicon-valley-debut/

|access-date=2023-04-13

}}