Kaluza–Klein metric

{{Short description|Five-dimensional metric}}

In Kaluza–Klein theory, a unification of general relativity and electromagnetism, the five-dimensional Kaluza–Klein metric is the generalization of the four-dimensional metric tensor. It additionally includes a scalar field called graviscalar (or radion) and a vector field called graviphoton (or gravivector), which correspond to hypothetical particles.

The Kaluza–Klein metric is named after Theodor Kaluza and Oskar Klein.

Definition

The Kaluza–Klein metric is given by:Witten 81, Equation (3)Duff 1994, Equation (2)Overduin & Wesson 1997, Equation (5)Pope, Equation (1.8)

: \widetilde{g}_{ab}

:=\begin{bmatrix}

g_{\mu\nu}+\phi^2A_\mu A_\nu & \phi^2A_\mu \\

\phi^2A_\nu & \phi^2

\end{bmatrix}.

Its inverse matrix is given by:

: \widetilde{g}^{ab}

=\begin{bmatrix}

g^{\mu\nu} & -A^\mu \\

-A^\nu & g_{\mu\nu}A^\mu A^\nu+\phi^{-2}

\end{bmatrix}.

Defining an extended gravivector A_a=(A_\mu,1) shortens the definition to:

: \widetilde{g}_{ab}

=\operatorname{diag}(g_{\mu\nu},0)

+\phi^2A_aA_b,

which also shows that the radion \phi cannot vanish as this would make the metric singular.

Properties

  • A contraction directly shows the passing from four to five dimensions:
  • : g^{\mu\nu}g_{\mu\nu}=4,
  • : \widetilde{g}^{ab}\widetilde{g}_{ab}=5.
  • If \mathrm{d}s^2

=g_{\mu\nu}\mathrm{d}x^\mu\mathrm{d}x^\nu is the four-dimensional and \mathrm{d}\widetilde{s}^2

=\widetilde{g}_{ab}\mathrm{d}\widetilde{x}^a\mathrm{d}\widetilde{x}^b is the five-dimensional line element,Duff 1994, Equation (1) then there is the following relation resembling the Lorentz factor from special relativity:Pope, Equation (1.7)

  • : \frac{\mathrm{d}\widetilde{s}}{\mathrm{d}s}

=\sqrt{1+\phi^2\left(A_a\frac{\mathrm{d}x^a}{\mathrm{d}s}\right)^2}.

  • The determinants \widetilde{g}:=\det(\widetilde{g}_{ab}) and g:=\det(g_{\mu\nu}) are connected by:Pope, Equation (1.14)
  • : \widetilde{g}

=\phi^2g

\Leftrightarrow

\sqrt{-\widetilde{g}}

=\phi\sqrt{-g}.

: Although the above expression \widetilde{g}_{ab}

=\operatorname{diag}(g_{\mu\nu},0)

+\phi^2A_aA_b fits the structure of the matrix determinant lemma, it cannot be applied since the former term is singular.

  • Analogous to the metric tensor, but additionally using the above relation \widetilde{g}=\phi^2g, one has:
  • :

\widetilde{g}^{ab}\partial_c\widetilde{g}_{ab}

=\partial_c\ln(-\widetilde{g})

=\partial_c\ln(-\phi^2g).

Literature

  • {{cite journal |last=Witten |first=Edward |author-link=Edward Witten |date=1981 |title=Search for a realistic Kaluza–Klein theory |journal=Nuclear Physics B |volume=186 |issue=3 |pages=412–428 |bibcode=1981NuPhB.186..412W |doi=10.1016/0550-3213(81)90021-3}}
  • {{cite arxiv |arxiv=hep-th/9410046 |first=M. J. |last=Duff |title=Kaluza-Klein Theory in Perspective |date=1994-10-07 |language=en}}
  • {{cite journal |last=Overduin |first=J. M. |author2=Wesson, P. S. |date=1997 |title=Kaluza–Klein Gravity |journal=Physics Reports |volume=283 |issue=5 |pages=303–378 |arxiv=gr-qc/9805018 |bibcode=1997PhR...283..303O |doi=10.1016/S0370-1573(96)00046-4 |s2cid=119087814}}
  • {{cite web |last=Pope |first=Chris |title=Kaluza–Klein Theory |url=https://people.tamu.edu/~c-pope/ihplec.pdf}}

References