Kaluza–Klein metric
{{Short description|Five-dimensional metric}}
In Kaluza–Klein theory, a unification of general relativity and electromagnetism, the five-dimensional Kaluza–Klein metric is the generalization of the four-dimensional metric tensor. It additionally includes a scalar field called graviscalar (or radion) and a vector field called graviphoton (or gravivector), which correspond to hypothetical particles.
The Kaluza–Klein metric is named after Theodor Kaluza and Oskar Klein.
Definition
The Kaluza–Klein metric is given by:Witten 81, Equation (3)Duff 1994, Equation (2)Overduin & Wesson 1997, Equation (5)Pope, Equation (1.8)
:
:=\begin{bmatrix}
g_{\mu\nu}+\phi^2A_\mu A_\nu & \phi^2A_\mu \\
\phi^2A_\nu & \phi^2
\end{bmatrix}.
Its inverse matrix is given by:
:
=\begin{bmatrix}
g^{\mu\nu} & -A^\mu \\
-A^\nu & g_{\mu\nu}A^\mu A^\nu+\phi^{-2}
\end{bmatrix}.
Defining an extended gravivector shortens the definition to:
:
=\operatorname{diag}(g_{\mu\nu},0)
+\phi^2A_aA_b,
which also shows that the radion cannot vanish as this would make the metric singular.
Properties
- A contraction directly shows the passing from four to five dimensions:
- :
- :
- If
=g_{\mu\nu}\mathrm{d}x^\mu\mathrm{d}x^\nu is the four-dimensional and
=\widetilde{g}_{ab}\mathrm{d}\widetilde{x}^a\mathrm{d}\widetilde{x}^b is the five-dimensional line element,Duff 1994, Equation (1) then there is the following relation resembling the Lorentz factor from special relativity:Pope, Equation (1.7)
- :
=\sqrt{1+\phi^2\left(A_a\frac{\mathrm{d}x^a}{\mathrm{d}s}\right)^2}.
- The determinants and are connected by:Pope, Equation (1.14)
- :
=\phi^2g
\Leftrightarrow
\sqrt{-\widetilde{g}}
=\phi\sqrt{-g}.
: Although the above expression
=\operatorname{diag}(g_{\mu\nu},0)
+\phi^2A_aA_b fits the structure of the matrix determinant lemma, it cannot be applied since the former term is singular.
\widetilde{g}^{ab}\partial_c\widetilde{g}_{ab}
=\partial_c\ln(-\widetilde{g})
=\partial_c\ln(-\phi^2g).
Literature
- {{cite journal |last=Witten |first=Edward |author-link=Edward Witten |date=1981 |title=Search for a realistic Kaluza–Klein theory |journal=Nuclear Physics B |volume=186 |issue=3 |pages=412–428 |bibcode=1981NuPhB.186..412W |doi=10.1016/0550-3213(81)90021-3}}
- {{cite arxiv |arxiv=hep-th/9410046 |first=M. J. |last=Duff |title=Kaluza-Klein Theory in Perspective |date=1994-10-07 |language=en}}
- {{cite journal |last=Overduin |first=J. M. |author2=Wesson, P. S. |date=1997 |title=Kaluza–Klein Gravity |journal=Physics Reports |volume=283 |issue=5 |pages=303–378 |arxiv=gr-qc/9805018 |bibcode=1997PhR...283..303O |doi=10.1016/S0370-1573(96)00046-4 |s2cid=119087814}}
- {{cite web |last=Pope |first=Chris |title=Kaluza–Klein Theory |url=https://people.tamu.edu/~c-pope/ihplec.pdf}}
References
{{DEFAULTSORT:Kaluza-Klein Metric}}