Kampé de Fériet function

{{short description|Special function in mathematics}}

In mathematics, the Kampé de Fériet function is a two-variable generalization of the generalized hypergeometric series, introduced by Joseph Kampé de Fériet.

The Kampé de Fériet function is given by

:

{}^{p+q}F_{r+s}\left(

\begin{matrix}

a_1,\cdots,a_p\colon b_1,b_1{}';\cdots;b_q,b_q{}'; \\

c_1,\cdots,c_r\colon d_1,d_1{}';\cdots;d_s,d_s{}';

\end{matrix}

x,y\right)=

\sum_{m=0}^\infty\sum_{n=0}^\infty\frac{(a_1)_{m+n}\cdots(a_p)_{m+n}}{(c_1)_{m+n}\cdots(c_r)_{m+n}}\frac{(b_1)_m(b_1{}')_n\cdots(b_q)_m(b_q{}')_n}{(d_1)_m(d_1{}')_n\cdots(d_s)_m(d_s{}')_n}\cdot\frac{x^my^n}{m!n!}.

Applications

The general sextic equation can be solved in terms of Kampé de Fériet functions.[http://mathworld.wolfram.com/SexticEquation.html Mathworld - Sextic Equation]

See also

References

{{Reflist}}

  • {{Citation | last1=Exton | first1=Harold | authorlink=Harold Exton | title=Handbook of hypergeometric integrals | url=https://books.google.com/books?id=fUHvAAAAMAAJ | publisher=Ellis Horwood Ltd. | location=Chichester | series=Mathematics and its Applications | isbn=978-0-85312-122-0 | mr=0474684 | year=1978}}
  • {{Citation | last1=Kampé de Fériet | first1=M. J. | title=La fonction hypergéométrique. | url=https://books.google.com/books?id=JObuAAAAMAAJ | publisher=Paris: Gauthier-Villars | language=French | series=Mémorial des sciences mathématiques | jfm=63.0996.03 | year=1937 | volume=85}}
  • {{ cite journal

|first1=F. J.

|last1=Ragab

|title = Expansions of Kampe de Feriet's double hypergeometric function of higher order

|year=1963

|issue=212

|pages=113–119

|doi=10.1515/crll.1963.212.113

|journal=J. reine angew. Math.

|volume=212

|s2cid=118329382

}}