Kaniadakis Weibull distribution
{{Short description|Continuous probability distribution}}{{Notability|date=February 2023}}{{Infobox probability distribution
| name = κ-Weibull distribution
| type = density
| parameters =
rate shape (real)
rate (real)
| support =
| pdf =
| cdf =
|pdf_image=File:Kaniadakis weibull pdf.png|cdf_image=File:Kaniadakis weibull cdf.png|moments=|mode=|median=|quantile=}}
The Kaniadakis Weibull distribution (or κ-Weibull distribution) is a probability distribution arising as a generalization of the Weibull distribution.{{Cite journal |last1=Clementi |first1=F. |last2=Gallegati |first2=M. |last3=Kaniadakis |first3=G. |date=2007 |title=κ-generalized statistics in personal income distribution |url=http://link.springer.com/10.1140/epjb/e2007-00120-9 |journal=The European Physical Journal B |language=en |volume=57 |issue=2 |pages=187–193 |doi=10.1140/epjb/e2007-00120-9 |arxiv=physics/0607293 |bibcode=2007EPJB...57..187C |s2cid=15777288 |issn=1434-6028}}{{Cite journal |last1=Clementi |first1=F. |last2=Di Matteo |first2=T.|author2-link=Tiziana Di Matteo (econophysicist) |last3=Gallegati |first3=M. |last4=Kaniadakis |first4=G. |date=2008 |title=The -generalized distribution: A new descriptive model for the size distribution of incomes |url=https://linkinghub.elsevier.com/retrieve/pii/S0378437108001349 |journal=Physica A: Statistical Mechanics and Its Applications |language=en |volume=387 |issue=13 |pages=3201–3208 |doi=10.1016/j.physa.2008.01.109|arxiv=0710.3645 |s2cid=2590064 }} It is one example of a Kaniadakis κ-distribution. The κ-Weibull distribution has been adopted successfully for describing a wide variety of complex systems in seismology, economy, epidemiology, among many others.
Definitions
= Probability density function =
The Kaniadakis κ-Weibull distribution is exhibits power-law right tails, and it has the following probability density function:{{Cite journal |last=Kaniadakis |first=G. |date=2021-01-01 |title=New power-law tailed distributions emerging in κ-statistics (a) |url=https://iopscience.iop.org/article/10.1209/0295-5075/133/10002 |journal=Europhysics Letters |volume=133 |issue=1 |pages=10002 |doi=10.1209/0295-5075/133/10002 |arxiv=2203.01743 |bibcode=2021EL....13310002K |s2cid=234144356 |issn=0295-5075}}
:
f_{_{\kappa}}(x) =
\frac{\alpha \beta x^{\alpha-1}}{\sqrt{1+\kappa^2 \beta^2 x^{2\alpha} }} \exp_\kappa(-\beta x^\alpha)
valid for , where is the entropic index associated with the Kaniadakis entropy, is the scale parameter, and is the shape parameter or Weibull modulus.
The Weibull distribution is recovered as
= Cumulative distribution function =
The cumulative distribution function of κ-Weibull distribution is given by
valid for . The cumulative Weibull distribution is recovered in the classical limit .= Survival distribution and hazard functions =
The survival distribution function of κ-Weibull distribution is given by
:
valid for . The survival Weibull distribution is recovered in the classical limit .
The hazard function of the κ-Weibull distribution is obtained through the solution of the κ-rate equation:
with , where is the hazard function::
The cumulative κ-Weibull distribution is related to the κ-hazard function by the following expression:
:
where
:
:
is the cumulative κ-hazard function. The cumulative hazard function of the Weibull distribution is recovered in the classical limit : .
Properties
= Moments, median and mode =
The κ-Weibull distribution has moment of order given by
:
The median and the mode are:
:
:
== Quantiles ==
The quantiles are given by the following expression
with .== Gini coefficient ==
The Gini coefficient is:
== Asymptotic behavior ==
Related distributions
- The κ-Weibull distribution is a generalization of:
- κ-Exponential distribution of type II, when ;
- Exponential distribution when and .
- A κ-Weibull distribution corresponds to a κ-deformed Rayleigh distribution when and a Rayleigh distribution when and .
Applications
The κ-Weibull distribution has been applied in several areas, such as:
- In economy, for analyzing personal income models, in order to accurately describing simultaneously the income distribution among the richest part and the great majority of the population.{{Cite journal |last1=Clementi |first1=Fabio |last2=Gallegati |first2=Mauro |last3=Kaniadakis |first3=Giorgio |date=October 2010 |title=A model of personal income distribution with application to Italian data |url=http://link.springer.com/10.1007/s00181-009-0318-2 |journal=Empirical Economics |language=en |volume=39 |issue=2 |pages=559–591 |doi=10.1007/s00181-009-0318-2 |s2cid=154273794 |issn=0377-7332}}{{Cite journal |last1=Clementi |first1=F |last2=Gallegati |first2=M |last3=Kaniadakis |first3=G |date=2012-12-06 |title=A generalized statistical model for the size distribution of wealth |url=https://iopscience.iop.org/article/10.1088/1742-5468/2012/12/P12006 |journal=Journal of Statistical Mechanics: Theory and Experiment |volume=2012 |issue=12 |pages=P12006 |doi=10.1088/1742-5468/2012/12/P12006 |arxiv=1209.4787 |bibcode=2012JSMTE..12..006C |s2cid=18961951 |issn=1742-5468}}
- In seismology, the κ-Weibull represents the statistical distribution of magnitude of the earthquakes distributed across the Earth, generalizing the Gutenberg–Richter law,{{Cite journal |last=da Silva |first=Sérgio Luiz E.F. |date=2021 |title=κ -generalised Gutenberg–Richter law and the self-similarity of earthquakes |url=https://linkinghub.elsevier.com/retrieve/pii/S0960077920310134 |journal=Chaos, Solitons & Fractals |language=en |volume=143 |pages=110622 |doi=10.1016/j.chaos.2020.110622|bibcode=2021CSF...14310622D |s2cid=234063959 }} and the interval distributions of seismic data, modeling extreme-event return intervals.{{Cite journal |last1=Hristopulos |first1=Dionissios T. |last2=Petrakis |first2=Manolis P. |last3=Kaniadakis |first3=Giorgio |date=2014-05-28 |title=Finite-size effects on return interval distributions for weakest-link-scaling systems |url=https://link.aps.org/doi/10.1103/PhysRevE.89.052142 |journal=Physical Review E |language=en |volume=89 |issue=5 |pages=052142 |doi=10.1103/PhysRevE.89.052142 |pmid=25353774 |arxiv=1308.1881 |bibcode=2014PhRvE..89e2142H |s2cid=22310350 |issn=1539-3755}}{{Cite journal |last1=Hristopulos |first1=Dionissios |last2=Petrakis |first2=Manolis |last3=Kaniadakis |first3=Giorgio |date=2015-03-09 |title=Weakest-Link Scaling and Extreme Events in Finite-Sized Systems |journal=Entropy |language=en |volume=17 |issue=3 |pages=1103–1122 |doi=10.3390/e17031103 |bibcode=2015Entrp..17.1103H |issn=1099-4300|doi-access=free }}
- In epidemiology, the κ-Weibull distribution presents a universal feature for epidemiological analysis.{{Cite journal |last1=Kaniadakis |first1=Giorgio |last2=Baldi |first2=Mauro M. |last3=Deisboeck |first3=Thomas S. |last4=Grisolia |first4=Giulia |last5=Hristopulos |first5=Dionissios T. |last6=Scarfone |first6=Antonio M. |last7=Sparavigna |first7=Amelia |last8=Wada |first8=Tatsuaki |last9=Lucia |first9=Umberto |date=2020 |title=The κ-statistics approach to epidemiology |journal=Scientific Reports |language=en |volume=10 |issue=1 |pages=19949 |doi=10.1038/s41598-020-76673-3 |issn=2045-2322 |pmc=7673996 |pmid=33203913|bibcode=2020NatSR..1019949K }}
See also
References
{{Reflist}}
External links
- [https://arxiv.org/search/?query=kaniadakis+statistics&searchtype=all&abstracts=show&order=-announced_date_first&size=200 Kaniadakis Statistics on arXiv.org]
Category:Continuous distributions