Karamata's inequality

{{Short description|Algebra theorem about convex functions}}

In mathematics, Karamata's inequality,{{Citation

| last = Kadelburg

| first = Zoran

| last2 = Đukić

| first2 = Dušan

| last3 = Lukić

| first3 = Milivoje

| last4 = Matić

| first4 = Ivan

| title = Inequalities of Karamata, Schur and Muirhead, and some applications

| journal = The Teaching of Mathematics

| issn = 1451-4966

| volume = 8

| issue = 1

| pages = 31–45

| year = 2005

| url = http://elib.mi.sanu.ac.rs/files/journals/tm/14/tm813.pdf

}} named after Jovan Karamata,{{Citation

| last = Karamata

| first = Jovan

| author-link = Jovan Karamata

| title = Sur une inégalité relative aux fonctions convexes

| journal = Publ. Math. Univ. Belgrade

| volume = 1

| pages = 145–148

| year = 1932

| language = French

| url = http://elib.mi.sanu.ac.rs/files/journals/publ/1/11.pdf

| zbl = 0005.20101

}} also known as the majorization inequality, is a theorem in elementary algebra for convex and concave real-valued functions, defined on an interval of the real line. It generalizes the discrete form of Jensen's inequality, and generalizes in turn to the concept of Schur-convex functions.

Statement of the inequality

Let {{math|I}} be an interval of the real line and let {{math|f}} denote a real-valued, convex function defined on {{math|I}}. If {{math|x1, …, xn}} and {{math|y1, …, yn}} are numbers in {{math|I}} such that {{math|(x1, …, xn)}} majorizes {{math|(y1, …, yn)}}, then

{{NumBlk|:|f(x_1)+\cdots+f(x_n) \ge f(y_1)+\cdots+f(y_n).|{{EquationRef|1}}}}

Here majorization means that {{math|x1, …, xn}} and {{math|y1, …, yn}} satisfies

{{NumBlk|:|x_1\ge x_2\ge\cdots\ge x_n    and    y_1\ge y_2\ge\cdots\ge y_n,|{{EquationRef|2}}}}

and we have the inequalities

{{NumBlk|:|x_1+\cdots+x_i\ge y_1+\cdots+y_i     for all {{math|i ∈ {1, …, n − 1}}}.|{{EquationRef|3}}}}

and the equality

{{NumBlk|:|x_1+\cdots+x_n=y_1+\cdots+y_n|{{EquationRef|4}}}}

If {{math|f}}  is a strictly convex function, then the inequality ({{EquationNote|1}}) holds with equality if and only if we have {{math|1=xi = yi}} for all {{math|i ∈ {1, …, n}}}.

= Weak majorization case =

x \preceq_w y if and only if \sum g\left(x_i\right) \leq \sum g\left(y_i\right) for any continuous increasing convex function g: \R \to \R.{{Citation |last=Marshall |first=Albert W. |title=Introduction |date=2010 |work=Inequalities: Theory of Majorization and Its Applications |pages=3–28 |url=http://link.springer.com/10.1007/978-0-387-68276-1_1 |access-date=2025-01-29 |place=New York, NY |publisher=Springer New York |doi=10.1007/978-0-387-68276-1_1 |isbn=978-0-387-40087-7 |last2=Olkin |first2=Ingram |last3=Arnold |first3=Barry C.|url-access=subscription }}

Remarks

  • If the convex function {{math|f}}  is non-decreasing, then the proof of ({{EquationNote|1}}) below and the discussion of equality in case of strict convexity shows that the equality ({{EquationNote|4}}) can be relaxed to

    {{NumBlk|:|x_1+\cdots+x_n\ge y_1+\cdots+y_n.|{{EquationRef|5}}}}

  • The inequality ({{EquationNote|1}}) is reversed if {{math|f}}  is concave, since in this case the function {{math|−f}}  is convex.

Example

The finite form of Jensen's inequality is a special case of this result. Consider the real numbers {{math|x1, …, xnI}} and let

:a := \frac{x_1+x_2+\cdots+x_n}{n}

denote their arithmetic mean. Then {{math|(x1, …, xn)}} majorizes the {{math|n}}-tuple {{math|(a, a, …, a)}}, since the arithmetic mean of the {{math|i}} largest numbers of {{math|(x1, …, xn)}} is at least as large as the arithmetic mean {{math|a}} of all the {{math|n}} numbers, for every {{math|i ∈ {1, …, n − 1}}}. By Karamata's inequality ({{EquationNote|1}}) for the convex function {{math|f}},

:f(x_1)+f(x_2)+ \cdots +f(x_n) \ge f(a)+f(a)+\cdots+f(a) = nf(a).

Dividing by {{math|n}} gives Jensen's inequality. The sign is reversed if {{math|f}}  is concave.

Proof of the inequality

We may assume that the numbers are in decreasing order as specified in ({{EquationNote|2}}).

If {{math|1=xi = yi}} for all {{math|i ∈ {1, …, n}}}, then the inequality ({{EquationNote|1}}) holds with equality, hence we may assume in the following that {{math|xiyi}} for at least one {{math|i}}.

If {{math|1=xi = yi}} for an {{math|i ∈ {1, …, n}}}, then the inequality ({{EquationNote|1}}) and the majorization properties ({{EquationNote|3}}) and ({{EquationNote|4}}) are not affected if we remove {{math|xi}} and {{math|yi}}. Hence we may assume that {{math|xiyi}} for all {{math|i ∈ {1, …, n}}}.

It is a property of convex functions that for two numbers {{math|xy}} in the interval {{math|I}} the slope

:\frac{f(x)-f(y)}{x-y}

of the secant line through the points {{math|(x, f (x))}} and {{math|(y, f (y))}} of the graph of {{math|f}}  is a monotonically non-decreasing function in {{math|x}} for {{math|y}} fixed (and vice versa). This implies that

{{NumBlk|:|c_{i+1}:=\frac{f(x_{i+1})-f(y_{i+1})}{x_{i+1}-y_{i+1}}\le\frac{f(x_i)-f(y_i)}{x_i-y_i}=:c_i|{{EquationRef|6}}}}

for all {{math|i ∈ {1, …, n − 1}}}. Define {{math|1=A0 = B0 = 0}} and

:A_i=x_1+\cdots+x_i,\qquad B_i=y_1+\cdots+y_i

for all {{math|i ∈ {1, …, n}}}. By the majorization property ({{EquationNote|3}}), {{math|AiBi}} for all {{math|i ∈ {1, …, n − 1}}} and by ({{EquationNote|4}}), {{math|1=An = Bn}}. Hence,

{{NumBlk|:|\begin{align}

\sum_{i=1}^n \bigl(f(x_i) - f(y_i)\bigr)

&=\sum_{i=1}^n c_i (x_i - y_i)\\

&=\sum_{i=1}^n c_i \bigl(\underbrace{A_i - A_{i-1}}_{=\,x_i}{} - (\underbrace{B_i - B_{i-1}}_{=\,y_i})\bigr)\\

&=\sum_{i=1}^n c_i (A_i - B_i) - \sum_{i=1}^n c_i (A_{i-1} - B_{i-1})\\

&=c_n (\underbrace{A_n-B_n}_{=\,0}) + \sum_{i=1}^{n-1}(\underbrace{c_i - c_{i + 1}}_{\ge\,0})(\underbrace{A_i - B_i}_{\ge\,0}) - c_1(\underbrace{A_0-B_0}_{=\,0})\\

&\ge0,

\end{align}|{{EquationRef|7}}}}

which proves Karamata's inequality ({{EquationNote|1}}).

To discuss the case of equality in ({{EquationNote|1}}), note that {{math|x1 > y1}} by ({{EquationNote|3}}) and our assumption {{math|xiyi}} for all {{math|i ∈ {1, …, n − 1}}}. Let {{math|i}} be the smallest index such that {{math|(xi, yi) ≠ (xi+1, yi+1)}}, which exists due to ({{EquationNote|4}}). Then {{math|Ai > Bi}}. If {{math|f}}  is strictly convex, then there is strict inequality in ({{EquationNote|6}}), meaning that {{math|ci+1 < ci}}. Hence there is a strictly positive term in the sum on the right hand side of ({{EquationNote|7}}) and equality in ({{EquationNote|1}}) cannot hold.

If the convex function {{math|f}}  is non-decreasing, then {{math|cn ≥ 0}}. The relaxed condition ({{EquationNote|5}}) means that {{math|AnBn}}, which is enough to conclude that {{math|cn(AnBn) ≥ 0}} in the last step of ({{EquationNote|7}}).

If the function {{math|f}}  is strictly convex and non-decreasing, then {{math|cn > 0}}. It only remains to discuss the case {{math|An > Bn}}. However, then there is a strictly positive term on the right hand side of ({{EquationNote|7}}) and equality in ({{EquationNote|1}}) cannot hold.

References

{{reflist}}