Killing–Hopf theorem

{{Short description|Characterizes complete connected Riemannian manifolds of constant curvature}}

In geometry, the Killing–Hopf theorem states that complete connected Riemannian manifolds of constant curvature are isometric to a quotient of a sphere, Euclidean space, or hyperbolic space by a group acting freely and properly discontinuously.{{cite book |last=Lee |first=John M. |author-link=John M. Lee |date=2018 |title=Introduction to Riemannian Manifolds |url= |location=New York |publisher=Springer-Verlag |page=348 |isbn=978-3-319-91754-2}} These manifolds are called space forms. The Killing–Hopf theorem was proved by {{harvs|txt|last=Killing|authorlink=Wilhelm Killing|year=1891}} and {{harvs|txt|last=Hopf|authorlink=Heinz Hopf|year=1926}}.

References

{{Refs}}

  • {{Citation|last1=Hopf|first1=Heinz|author1-link=Heinz Hopf|title=Zum Clifford-Kleinschen Raumproblem|doi=10.1007/BF01206614|year=1926|journal=Mathematische Annalen|issn=0025-5831|volume=95 |issue=1|pages=313–339}}
  • {{Citation|last1=Killing|first1=Wilhelm|title=Ueber die Clifford-Klein'schen Raumformen|doi=10.1007/BF01206655|year=1891|journal=Mathematische Annalen|issn=0025-5831|volume=39|issue=2|pages=257–278}}

{{Manifolds}}

{{DEFAULTSORT:Killing-Hopf theorem}}

Category:Riemannian geometry

Category:Theorems in Riemannian geometry

{{Riemannian-geometry-stub}}