Kreiss matrix theorem

In matrix analysis, Kreiss matrix theorem relates the so-called Kreiss constant of a matrix with the power iterates of this matrix. It was originally introduced by Heinz-Otto Kreiss to analyze the stability of finite difference methods for partial difference equations.{{Cite journal |last=Kreiss |first=Heinz-Otto |date=1962 |title=Über Die Stabilitätsdefinition Für Differenzengleichungen Die Partielle Differentialgleichungen Approximieren |url=http://dx.doi.org/10.1007/bf01957330 |journal=BIT |volume=2 |issue=3 |pages=153–181 |doi=10.1007/bf01957330 |s2cid=118346536 |issn=0006-3835}}{{Cite journal |last1=Strikwerda |first1=John |last2=Wade |first2=Bruce |date=1997 |title=A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions |journal=Banach Center Publications |volume=38 |issue=1 |pages=339–360 |doi=10.4064/-38-1-339-360 |issn=0137-6934|doi-access=free }}

Kreiss constant of a matrix

Given a matrix A, the Kreiss constant 𝒦(A) (with respect to the closed unit circle) of A is defined as{{Cite journal |last=Raouafi |first=Samir |date=2018 |title=A generalization of the Kreiss Matrix Theorem |journal=Linear Algebra and Its Applications |language=en |volume=549 |pages=86–99 |doi=10.1016/j.laa.2018.03.011|s2cid=126237400 |doi-access=free }}

\mathcal{K}(\mathbf{A})=\sup _{|z|>1}(|z|-1)\left\|(z-\mathbf{A})^{-1}\right\|,

while the Kreiss constant 𝒦{{Sub|lhp}}(A) with respect to the left-half plane is given by

\mathcal{K}_{\textrm{lhp}}(\mathbf{A})=\sup _{\Re(z)>0}(\Re(z))\left\|(z-\mathbf{A})^{-1}\right\|.

= Properties =

  • For any matrix A, one has that 𝒦(A) ≥ 1 and 𝒦{{Sub|lhp}}(A) ≥ 1. In particular, 𝒦(A) (resp. 𝒦{{Sub|lhp}}(A)) are finite only if the matrix A is Schur stable (resp. Hurwitz stable).
  • Kreiss constant can be interpreted as a measure of normality of a matrix.{{Cite thesis |title=Non-normality in scalar delay differential equations |author=Jacob Nathaniel Stroh |year=2006 |url=https://bueler.github.io/papers/jnstrohMS.pdf}} In particular, for normal matrices A with spectral radius less than 1, one has that 𝒦(A) = 1. Similarly, for normal matrices A that are Hurwitz stable, 𝒦{{Sub|lhp}}(A) = 1.
  • 𝒦(A) and 𝒦{{Sub|lhp}}(A) have alternative definitions through the pseudospectrum Λ{{Sub|ε}}(A):{{Cite journal |last=Mitchell |first=Tim |date=2020 |title=Computing the Kreiss Constant of a Matrix |url=http://dx.doi.org/10.1137/19m1275127 |journal=SIAM Journal on Matrix Analysis and Applications |volume=41 |issue=4 |pages=1944–1975 |doi=10.1137/19m1275127 |arxiv=1907.06537 |s2cid=196622538 |issn=0895-4798}}
  • \mathcal{K}(A)=\sup _{\varepsilon>0} \frac{\rho_{\varepsilon}(A)-1}{\varepsilon} , where p{{Sub|ε}}(A) = max{|λ| : λ ∈ Λ{{Sub|ε}}(A)},
  • \mathcal{K}_{\textrm{lhp}}(A)=\sup _{\varepsilon>0} \frac{\alpha_{\varepsilon}(A)}{\varepsilon}, where α{{Sub|ε}}(A) = max{Re|λ| : λ ∈ Λ{{Sub|ε}}(A)}.
  • 𝒦{{Sub|lhp}}(A) can be computed through robust control methods.{{Cite journal |last1=Apkarian |first1=Pierre |last2=Noll |first2=Dominikus |date=2020 |title=Optimizing the Kreiss Constant |url=http://dx.doi.org/10.1137/19m1296215 |journal=SIAM Journal on Control and Optimization |volume=58 |issue=6 |pages=3342–3362 |arxiv=1910.12572 |doi=10.1137/19m1296215 |s2cid=204904802 |issn=0363-0129}}

Statement of Kreiss matrix theorem

Let A be a square matrix of order n and e be the Euler's number. The modern and sharp version of Kreiss matrix theorem states that the inequality below is tight{{Citation |last1=Trefethen |first1=Lloyd N. |title=Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators |page=177 |year=2005 |publisher=Princeton University Press |last2=Embree |first2=Mark}}

\mathcal{K}(\mathbf{A}) \leq \sup_{k \geq 0}\left\|\mathbf{A}^k\right\| \leq e\, n\, \mathcal{K}(\mathbf{A}),

and it follows from the application of Spijker's lemma.{{Cite journal |last1=Wegert |first1=Elias |last2=Trefethen |first2=Lloyd N. |date=1994 |title=From the Buffon Needle Problem to the Kreiss Matrix Theorem |url=https://www.jstor.org/stable/2324361 |journal=The American Mathematical Monthly |volume=101 |issue=2 |pages=132 |doi=10.2307/2324361|jstor=2324361 |hdl=1813/7113 |hdl-access=free }}

There also exists an analogous result in terms of the Kreiss constant with respect to the left-half plane and the matrix exponential:{{Citation |last1=Trefethen |first1=Lloyd N. |title=Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators |page=183 |year=2005 |publisher=Princeton University Press |last2=Embree |first2=Mark}}

\mathcal{K}_{\mathrm{lhp}}(\mathbf{A}) \leq \sup _{t \geq 0}\left\|\mathrm{e}^{t \mathbf{A}}\right\| \leq e \, n \, \mathcal{K}_{\mathrm{lhp}}(\mathbf{A})

Consequences and applications

The value \sup_{k \geq 0}\left\|\mathbf{A}^k\right\| (respectively, \sup _{t \geq 0}\left\|\mathrm{e}^{t \mathbf{A}}\right\|) can be interpreted as the maximum transient growth of the discrete-time system x_{k+1}=A x_k (respectively, continuous-time system \dot{x}=A x).

Thus, the Kreiss matrix theorem gives both upper and lower bounds on the transient behavior of the system with dynamics given by the matrix A: a large (and finite) Kreiss constant indicates that the system will have an accentuated transient phase before decaying to zero.

References