Kummer's congruence

{{short description|Result in number theory showing congruences involving Bernoulli numbers}}

In mathematics, Kummer's congruences are some congruences involving Bernoulli numbers, found by {{harvs|txt|authorlink=Ernst Eduard Kummer|first=Ernst Eduard|last= Kummer|year=1851}}.

{{harvtxt|Kubota|Leopoldt|1964}} used Kummer's congruences to define the p-adic zeta function.

Statement

The simplest form of Kummer's congruence states that

: \frac{B_h}{h}\equiv \frac{B_k}{k} \pmod p \text{ whenever } h\equiv k \pmod {p-1}

where p is a prime, h and k are positive even integers not divisible by p−1 and the numbers Bh are Bernoulli numbers.

More generally if h and k are positive even integers not divisible by p − 1, then

: (1-p^{h-1})\frac{B_h}{h}\equiv (1-p^{k-1})\frac{B_k}{k} \pmod {p^{a+1}}

whenever

: h\equiv k\pmod {\varphi(p^{a+1})}

where φ(pa+1) is the Euler totient function, evaluated at pa+1 and a is a non negative integer. At a = 0, the expression takes the simpler form, as seen above.

The two sides of the Kummer congruence are essentially values of the p-adic zeta function, and the Kummer congruences imply that the p-adic zeta function for negative integers is continuous, so can be extended by continuity to all p-adic integers.

See also

References

  • {{Citation | last1=Koblitz | first1=Neal | author1-link=Neal Koblitz | title=p-adic Numbers, p-adic Analysis, and Zeta-Functions | publisher=Springer-Verlag | location=Berlin, New York | series=Graduate Texts in Mathematics, vol. 58 | isbn=978-0-387-96017-3 | mr=754003 | year=1984}}
  • {{Citation | last1=Kubota | first1=Tomio | last2=Leopoldt | first2=Heinrich-Wolfgang | title=Eine p-adische Theorie der Zetawerte. I. Einführung der p-adischen Dirichletschen L-Funktionen | url=https://gdz.sub.uni-goettingen.de/id/PPN243919689_0214_0215?tify={%22pages%22:%5B334%5D,%22view%22:%22info%22} | mr=0163900 | year=1964 | journal=Journal für die reine und angewandte Mathematik | issn=0075-4102 | volume=214/215 | pages=328–339 | author1-link=Tomio Kubota | author2-link=Heinrich-Wolfgang Leopoldt | doi=10.1515/crll.1964.214-215.328 }}
  • {{Citation | last1=Kummer | first1=Ernst Eduard | title=Über eine allgemeine Eigenschaft der rationalen Entwicklungscoëfficienten einer bestimmten Gattung analytischer Functionen | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002147319 |id={{ERAM|041.1136cj}} | year=1851 | journal=Journal für die Reine und Angewandte Mathematik | issn=0075-4102 | volume= 41 | pages=368–372 | doi=10.1515/crll.1851.41.368}}

Category:Theorems in number theory

Category:Modular arithmetic