Kummer's theorem

{{short description|Describes the highest power of primes dividing a binomial coefficient}}

In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in 1852 {{harv|Kummer|1852}}.

Statement

Kummer's theorem states that for given integers n ≥ m ≥ 0 and a prime number p, the p-adic valuation \nu_p\!\tbinom n m of the binomial coefficient \tbinom{n}{m} is equal to the number of carries when m is added to n − m in base p.

An equivalent formation of the theorem is as follows:

Write the base-p expansion of the integer n as n=n_0+n_1p+n_2p^2+\cdots+n_rp^r, and define S_p(n):=n_0+n_1+\cdots+n_r to be the sum of the base-p digits. Then

: \nu_p\!\binom nm = \dfrac{S_p(m) + S_p(n-m) - S_p(n)}{p-1}.

The theorem can be proved by writing \tbinom{n}{m} as \tfrac{n!}{m! (n-m)!} and using Legendre's formula.{{Cite journal|last=Mihet|first=Dorel|date=December 2010|title=Legendre's and Kummer's Theorems Again|url=https://www.ias.ac.in/article/fulltext/reso/015/12/1111-1121|journal=Resonance|volume=15|issue=12|pages=1111–1121|doi=10.1007/s12045-010-0123-4 |url-access=subscription}}

= Examples =

To compute the largest power of 2 dividing the binomial coefficient \tbinom{10}{3} write {{math| m {{=}} 3}} and {{math| nm {{=}} 7}} in base {{math| p {{=}} 2}} as {{math|3 {{=}} 112}} and {{math|7 {{=}} 1112}}. Carrying out the addition {{math| 112 + 1112 {{=}} 10102}} in base 2 requires three carries:

: \begin{array}{ccccc}

& _1 & _1 & _1 \\

& & & 1 & 1 \,_2 \\

+ & & 1 & 1 & 1 \,_2 \\\hline

& 1 & 0 & 1 & 0 \,_2

\end{array}

Therefore the largest power of 2 that divides \tbinom{10}{3} = 120 = 2^3 \cdot 15 is 3.

Alternatively, the form involving sums of digits can be used. The sums of digits of 3, 7, and 10 in base 2 are S_2(3) = 1 + 1 = 2, S_2(7) = 1 + 1 + 1 = 3, and S_2(10) = 1 + 0 + 1 + 0 = 2 respectively. Then

: \nu_2\!\binom {10}3 = \dfrac{S_2(3) + S_2(7) - S_2(10)}{2 - 1} = \dfrac{2 + 3 - 2}{2 - 1} = 3.

Multinomial coefficient generalization

Kummer's theorem can be generalized to multinomial coefficients \tbinom n {m_1,\ldots,m_k} = \tfrac{n!}{m_1!\cdots m_k!} as follows:

: \nu_p\!\binom n {m_1,\ldots,m_k} = \dfrac{1}{p-1} \left(\left(\sum_{i=1}^k S_p(m_i) \right) - S_p(n) \right).

See also

References

{{reflist}}

  • {{cite journal

|last=Kummer

|first=Ernst

|title=Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen

|journal=Journal für die reine und angewandte Mathematik

|year=1852

|volume=1852

|issue=44

|pages=93–146

|doi=10.1515/crll.1852.44.93|url=https://zenodo.org/record/1448864

}}

  • {{PlanetMath|urlname=KummersTheorem|title=Kummer's theorem}}

Category:Theorems in number theory