Kummer's theorem
{{short description|Describes the highest power of primes dividing a binomial coefficient}}
In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in 1852 {{harv|Kummer|1852}}.
Statement
Kummer's theorem states that for given integers n ≥ m ≥ 0 and a prime number p, the p-adic valuation of the binomial coefficient is equal to the number of carries when m is added to n − m in base p.
An equivalent formation of the theorem is as follows:
Write the base- expansion of the integer as , and define to be the sum of the base- digits. Then
:
The theorem can be proved by writing as and using Legendre's formula.{{Cite journal|last=Mihet|first=Dorel|date=December 2010|title=Legendre's and Kummer's Theorems Again|url=https://www.ias.ac.in/article/fulltext/reso/015/12/1111-1121|journal=Resonance|volume=15|issue=12|pages=1111–1121|doi=10.1007/s12045-010-0123-4 |url-access=subscription}}
= Examples =
To compute the largest power of 2 dividing the binomial coefficient write {{math| m {{=}} 3}} and {{math| n − m {{=}} 7}} in base {{math| p {{=}} 2}} as {{math|3 {{=}} 112}} and {{math|7 {{=}} 1112}}. Carrying out the addition {{math| 112 + 1112 {{=}} 10102}} in base 2 requires three carries:
:
& _1 & _1 & _1 \\
& & & 1 & 1 \,_2 \\
+ & & 1 & 1 & 1 \,_2 \\\hline
& 1 & 0 & 1 & 0 \,_2
\end{array}
Therefore the largest power of 2 that divides is 3.
Alternatively, the form involving sums of digits can be used. The sums of digits of 3, 7, and 10 in base 2 are , , and respectively. Then
:
Multinomial coefficient generalization
Kummer's theorem can be generalized to multinomial coefficients as follows:
:
See also
References
{{reflist}}
- {{cite journal
|last=Kummer
|first=Ernst
|title=Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen
|journal=Journal für die reine und angewandte Mathematik
|year=1852
|volume=1852
|issue=44
|pages=93–146
|doi=10.1515/crll.1852.44.93|url=https://zenodo.org/record/1448864
}}
- {{PlanetMath|urlname=KummersTheorem|title=Kummer's theorem}}