LYRM7
{{Short description|Protein-coding gene in the species Homo sapiens}}
LYR motif containing 7, also known as Complex III assembly factor LYRM7 or LYR motif-containing protein 7 is a protein that in humans is encoded by the LYRM7 gene.
{{cite web
| title = Entrez Gene: LYR motif containing 7
| url = https://www.ncbi.nlm.nih.gov/gene/90624
| access-date = 2018-08-01
}}{{PD-notice}} It belongs to the superfamily of LYRM proteins, which are characterized by a conserved leucine–tyrosine–arginine motif.{{Cite journal |last1=Dohnálek |first1=Vít |last2=Doležal |first2=Pavel |date=May 2024 |title=Installation of LYRM proteins in early eukaryotes to regulate the metabolic capacity of the emerging mitochondrion |url= |journal=Open Biology |language=en |volume=14 |issue=5 |doi=10.1098/rsob.240021 |issn=2046-2441 |pmc=11293456 |pmid=38772414 |doi-access=free}} The protein encoded by this gene is a nuclear-encoded mitochondrial matrix protein that stabilizes UQCRFS1 and chaperones it to the CIII complex. Defects in this gene are a cause of mitochondrial complex III deficiency, nuclear type 8. Three transcript variants encoding two different isoforms have been found for this gene.
Structure
The LYRM7 gene is located on the q arm of chromosome 5 at position 23.3 to 31.1, spans 34,512 base pairs, and has 5 exons. The LYRM7 gene produces a 6.2 kDa protein composed of 53 amino acids, which is a soluble matrix protein with an N-terminal LYR motif.{{cite journal |last1=Sánchez |first1=E |last2=Lobo |first2=T |last3=Fox |first3=JL |last4=Zeviani |first4=M |last5=Winge |first5=DR |last6=Fernández-Vizarra |first6=E |title=LYRM7/MZM1L is a UQCRFS1 chaperone involved in the last steps of mitochondrial Complex III assembly in human cells |journal=Biochimica et Biophysica Acta (BBA) - Bioenergetics |date=March 2013 |volume=1827 |issue=3 |pages=285–93 |doi=10.1016/j.bbabio.2012.11.003 |pmid=23168492|pmc=3570683 }}{{cite journal | vauthors = Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P | title = Integration of cardiac proteome biology and medicine by a specialized knowledgebase | journal = Circulation Research | volume = 113 | issue = 9 | pages = 1043–53 | date = Oct 2013 | pmid = 23965338 | pmc = 4076475 | doi = 10.1161/CIRCRESAHA.113.301151 }}{{cite web | url = https://amino.heartproteome.org/web/protein/D6R994 | website = Cardiac Organellar Protein Atlas Knowledgebase (COPaKB) | title = Complex III assembly factor LYRM7 | access-date = 2018-08-06 | archive-date = 2018-08-07 | archive-url = https://web.archive.org/web/20180807002038/https://amino.heartproteome.org/web/protein/D6R994 | url-status = dead }} LYRM7 is an assembly factor of the enzyme Ubiquinol Cytochrome c Reductase (UQCR, Complex III or Cytochrome bc1 complex) of the mitochondrial respiratory chain.
Function
The LYRM7 gene encodes for an assembly factor necessary for the incorporation of the iron-sulfur cluster in the Rieske (Fe-S) protein (UQCRFS1),{{Cite journal|last1=Maio|first1=Nunziata|last2=Kim|first2=Ki Soon|last3=Singh|first3=Anamika|last4=Rouault|first4=Tracey A.|date=April 2017|title=A Single Adaptable Cochaperone-Scaffold Complex Delivers Nascent Iron-Sulfur Clusters to Mammalian Respiratory Chain Complexes I–III|journal=Cell Metabolism|volume=25|issue=4|pages=945–953.e6|doi=10.1016/j.cmet.2017.03.010|pmid=28380382|issn=1550-4131|doi-access=free}} which is an essential subunit of the Ubiquinol Cytochrome c Reductase (complex III) of the mitochondrial respiratory chain. LYRM7 acts by binding to the co-chaperone HSC20 of the Fe-S biogenesis machinery, which brings a cluster assembled on the main scaffold protein ISCU. Direct binding of HSC20 to the LYR motif of LYRM7 in a pre-assembled UQCRFS1-LYRM7 intermediate in the mitochondrial matrix facilitates transfer of the Fe-S cluster from holo-ISCU to UQCRFS1.
UQCRFS1, or Rieske (Fe-S) protein (UQCRFS1) is the last catalytic subunit added to the complex. Complex III is required for the catalysis of electron transfer from coenzyme Q to cytochrome c as well as the pumping of protons into the inner membrane from the matrix for the generation of an ATP-coupled electrochemical potential.{{Cite web|url=https://www.uniprot.org/uniprot/Q5U5X0|title= LYRM7 - Complex III assembly factor LYRM7 - Homo sapiens (Human) - LYRM7 gene & protein|website=www.uniprot.org|access-date=2018-07-31}}{{CC-notice|cc=by4 | url=www.uniprot.org | author(s)= UniProt }}{{cite journal | title = UniProt: the universal protein knowledgebase | journal = Nucleic Acids Research | volume = 45 | issue = D1 | pages = D158–D169 | date = January 2017 | pmid = 27899622 | pmc = 5210571 | doi = 10.1093/nar/gkw1099 }}
Clinical significance
Variants of LYRM7 have been associated with mitochondrial complex III deficiency, nuclear 8 (MC3DN8). Mitochondrial complex III deficiency, nuclear 8 is a form of mitochondrial complex III deficiency, a disorder of Complex III of the mitochondrial respiratory chain. The deficiency is known to be highly variable in phenotype depending on which tissues are affected. Clinical features include mitochondrial encephalopathy, psychomotor retardation, ataxia, severe failure to thrive, liver dysfunction, renal tubulopathy, muscle weakness and exercise intolerance. Pathogenic Mutations of the LYRM7 gene have included (c.73G>A), (c.214C>T), (c.37delA), and others.{{cite journal |vauthors=Invernizzi F, Tigano M, Dallabona C, Donnini C, Ferrero I, Cremonte M, Ghezzi D, Lamperti C, Zeviani M |title=A homozygous mutation in LYRM7/MZM1L associated with early onset encephalopathy, lactic acidosis, and severe reduction of mitochondrial complex III activity |journal=Hum. Mutat. |volume=34 |issue=12 |pages=1619–22 |date=December 2013 |pmid=24014394 |pmc=4028993 |doi=10.1002/humu.22441 }}{{cite journal |vauthors=Dallabona C, Abbink TE, Carrozzo R, Torraco A, Legati A, van Berkel CG, Niceta M, Langella T, Verrigni D, Rizza T, Diodato D, Piemonte F, Lamantea E, Fang M, Zhang J, Martinelli D, Bevivino E, Dionisi-Vici C, Vanderver A, Philip SG, Kurian MA, Verma IC, Bijarnia-Mahay S, Jacinto S, Furtado F, Accorsi P, Ardissone A, Moroni I, Ferrero I, Tartaglia M, Goffrini P, Ghezzi D, van der Knaap MS, Bertini E |title=LYRM7 mutations cause a multifocal cavitating leukoencephalopathy with distinct MRI appearance |journal=Brain |volume=139 |issue=Pt 3 |pages=782–94 |date=March 2016 |pmid=26912632 |doi=10.1093/brain/awv392 |url=https://boa.unimib.it/bitstream/10281/205475/1/brain%20%282016%29.pdf|doi-access=free }}
References
{{reflist}}
Further reading
{{refbegin | 2}}
- {{cite journal |vauthors=Trynka G, Zhernakova A, Romanos J, Franke L, Hunt KA, Turner G, Bruinenberg M, Heap GA, Platteel M, Ryan AW, de Kovel C, Holmes GK, Howdle PD, Walters JR, Sanders DS, Mulder CJ, Mearin ML, Verbeek WH, Trimble V, Stevens FM, Kelleher D, Barisani D, Bardella MT, McManus R, van Heel DA, Wijmenga C |title=Coeliac disease-associated risk variants in TNFAIP3 and REL implicate altered NF-kappaB signalling |journal=Gut |volume=58 |issue=8 |pages=1078–83 |date=August 2009 |pmid=19240061 |doi=10.1136/gut.2008.169052 |s2cid=17111427 |url=https://research.vumc.nl/en/publications/9f0b4115-baf6-4bc6-ab6b-4fd7f23f0f0a|url-access=subscription }}
- {{cite journal |vauthors=Hendrickson SL, Lautenberger JA, Chinn LW, Malasky M, Sezgin E, Kingsley LA, Goedert JJ, Kirk GD, Gomperts ED, Buchbinder SP, Troyer JL, O'Brien SJ |title=Genetic variants in nuclear-encoded mitochondrial genes influence AIDS progression |journal=PLOS ONE |volume=5 |issue=9 |pages=e12862 |date=September 2010 |pmid=20877624 |pmc=2943476 |doi=10.1371/journal.pone.0012862 |bibcode=2010PLoSO...512862H |doi-access=free }}
{{refend}}
{{NLM content}}