Lah number

{{Short description|Mathematical sequence}}

{{Use American English|date = March 2019}}

File:Lah numbers.svg

In mathematics, the (signed and unsigned) Lah numbers are coefficients expressing rising factorials in terms of falling factorials and vice versa. They were discovered by Ivo Lah in 1954.{{cite journal | first=Ivo | last=Lah | title=A new kind of numbers and its application in the actuarial mathematics | journal=Boletim do Instituto dos Actuários Portugueses | volume=9 | year=1954 | pages=7–15}}[https://books.google.com/books?id=zWgIPlds29UC John Riordan, Introduction to Combinatorial Analysis], Princeton University Press (1958, reissue 1980) {{isbn|978-0-691-02365-6}} (reprinted again in 2002 by Dover Publications). Explicitly, the unsigned Lah numbers L(n, k) are given by the formula involving the binomial coefficient

L(n,k) = {n-1 \choose k-1} \frac{n!}{k!}

for n \geq k \geq 1.

Unsigned Lah numbers have an interesting meaning in combinatorics: they count the number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets.{{cite journal | title=Combinatorial Interpretation of Unsigned Stirling and Lah Numbers | first1=Marko | last1=Petkovsek | first2=Tomaz | last2=Pisanski | journal=Pi Mu Epsilon Journal | volume=12 | number=7 | date = Fall 2007 | pages=417–424 | jstor=24340704}} Lah numbers are related to Stirling numbers.{{cite book | first=Louis | last=Comtet | title=Advanced Combinatorics | publisher=Reidel | location=Dordrecht, Holland | year=1974 | url=https://archive.org/details/Comtet_Louis_-_Advanced_Coatorics | page=[https://archive.org/details/Comtet_Louis_-_Advanced_Coatorics/page/n83 156]| isbn=9789027703804 }}

For n \geq 1, the Lah number L(n, 1) is equal to the factorial n! in the interpretation above, the only partition of \{1, 2, 3 \} into 1 set can have its set ordered in 6 ways:\{(1, 2, 3)\}, \{(1, 3, 2)\}, \{(2, 1, 3)\}, \{(2, 3, 1)\}, \{(3, 1, 2)\}, \{(3, 2, 1)\}L(3, 2) is equal to 6, because there are six partitions of \{1, 2, 3 \} into two ordered parts:\{1, (2, 3) \}, \{1, (3, 2) \}, \{2, (1, 3) \}, \{2, (3, 1) \}, \{3, (1, 2) \}, \{3, (2, 1) \}L(n, n) is always 1 because the only way to partition \{1, 2, \ldots, n\} into n non-empty subsets results in subsets of size 1, that can only be permuted in one way.

In the more recent literature,{{cite arXiv |eprint=1412.8721 |first=Mark |last=Shattuck |title=Generalized r-Lah numbers |date=2014|class=math.CO }}{{Cite journal |last1=Nyul |first1=Gábor |last2=Rácz |first2=Gabriella |date=2015-10-06 |title=The r-Lah numbers |url=https://www.sciencedirect.com/science/article/pii/S0012365X14001241 |journal=Discrete Mathematics |series=Seventh Czech-Slovak International Symposium on Graph Theory, Combinatorics, Algorithms and Applications, Košice 2013 |language=en |volume=338 |issue=10 |pages=1660–1666 |doi=10.1016/j.disc.2014.03.029 |issn=0012-365X|hdl=2437/213886 |hdl-access=free }} KaramataKnuth style notation has taken over. Lah numbers are now often written asL(n,k) = \left\lfloor {n \atop k} \right\rfloor

Table of values

Below is a table of values for the Lah numbers:

class="wikitable" style="text-align:right;"
{{diagonal split header|{{mvar|n}} | {{mvar|k}}}}

!0

12345678910
0

|1

1

|0

| 1

2

|0

| 2

| 1

3

|0

| 6

| 6

| 1

4

|0

| 24

| 36

| 12

| 1

5

|0

| 120

| 240

| 120

| 20

| 1

6

|0

| 720

| 1800

| 1200

| 300

| 30

| 1

7

|0

| 5040

| 15120

| 12600

| 4200

| 630

| 42

| 1

8

|0

| 40320

| 141120

| 141120

| 58800

| 11760

| 1176

| 56

| 1

9

|0

| 362880

| 1451520

| 1693440

| 846720

| 211680

| 28224

| 2016

| 72

| 1

10

|0

|3628800

|16329600

|21772800

|12700800

|3810240

|635040

|60480

|3240

|90

|1

The row sums are 1, 1, 3, 13, 73, 501, 4051, 37633, \dots {{OEIS|A000262}}.

Rising and falling factorials

Let x^{(n)} represent the rising factorial x(x+1)(x+2) \cdots (x+n-1) and let (x)_n represent the falling factorial x(x-1)(x-2) \cdots (x-n+1). The Lah numbers are the coefficients that express each of these families of polynomials in terms of the other. Explicitly,x^{(n)} = \sum_{k=0}^n L(n,k) (x)_kand(x)_n = \sum_{k=0}^n (-1)^{n-k} L(n,k)x^{(k)}.For example,x(x+1)(x+2) = {\color{red}6}x + {\color{red}6}x(x-1) + {\color{red}1}x(x-1)(x-2)andx(x-1)(x-2) = {\color{red}6}x - {\color{red}6}x(x+1) + {\color{red}1}x(x+1)(x+2),

where the coefficients 6, 6, and 1 are exactly the Lah numbers L(3, 1), L(3, 2), and L(3, 3).

Identities and relations

The Lah numbers satisfy a variety of identities and relations.

In KaramataKnuth notation for Stirling numbers L(n,k) = \sum_{j=k}^n \left[{n\atop j}\right] \left\{{j\atop k}\right\}where \left[{n\atop j}\right] are the unsigned Stirling numbers of the first kind and \left\{{j\atop k}\right\} are the Stirling numbers of the second kind.

: L(n,k) = {n-1 \choose k-1} \frac{n!}{k!} = {n \choose k} \frac{(n-1)!}{(k-1)!} = {n \choose k} {n-1 \choose k-1} (n-k)!

: L(n,k) = \frac{n!(n-1)!}{k!(k-1)!}\cdot\frac{1}{(n-k)!} = \left (\frac{n!}{k!} \right )^2\frac{k}{n(n-k)!}

: k(k+1) L(n,k+1) = (n-k) L(n,k), for k>0.

= Recurrence relations =

The Lah numbers satisfy the recurrence relations

\begin{align} L(n+1,k) &= (n+k) L(n,k) + L(n,k-1) \\

&= k(k+1) L(n, k+1) + 2k L(n, k) + L(n, k-1)

\end{align}

where L(n,0)=\delta_n, the Kronecker delta, and L(n,k)=0 for all k > n.

= Exponential generating function =

:\sum_{n\geq k} L(n,k)\frac{x^n}{n!} = \frac{1}{k!}\left( \frac{x}{1-x} \right)^k

= Derivative of exp(1/''x'') =

The n-th derivative of the function e^\frac1{x} can be expressed with the Lah numbers, as follows{{cite journal |last1=Daboul |first1=Siad |last2=Mangaldan |first2=Jan |last3=Spivey |first3=Michael Z. |last4=Taylor |first4=Peter J. |year=2013 |title=The Lah Numbers and the nth Derivative of e^{1\over x} |journal=Mathematics Magazine |volume=86 |pages=39–47 |doi=10.4169/math.mag.86.1.039 |jstor=10.4169/math.mag.86.1.039 |s2cid=123113404 |number=1}} \frac{\textrm d^n}{\textrm dx^n} e^\frac1x = (-1)^n \sum_{k=1}^n \frac{L(n,k)}{x^{n+k}} \cdot e^\frac1x.For example,

\frac{\textrm d}{\textrm dx} e^\frac1x = - \frac{1}{x^2} \cdot e^{\frac1x}

\frac{\textrm d^2}{\textrm dx^2}e^\frac1{x} = \frac{\textrm d}{\textrm dx} \left(-\frac1{x^2} e^{\frac1x} \right)= -\frac{-2}{x^3} \cdot e^{\frac1x} - \frac1{x^2} \cdot \frac{-1}{x^2} \cdot e^{\frac1x}= \left(\frac2{x^3} + \frac1{x^4}\right) \cdot e^{\frac1x}

\frac{\textrm d^3}{\textrm dx^3} e^\frac1{x} = \frac{\textrm d}{\textrm dx} \left( \left(\frac2{x^3} + \frac1{x^4}\right) \cdot e^{\frac1x} \right) = \left(\frac{-6}{x^4} + \frac{-4}{x^5}\right) \cdot e^{\frac1x} + \left(\frac2{x^3} + \frac1{x^4}\right) \cdot \frac{-1}{x^2} \cdot e^{\frac1x} =-\left(\frac6{x^4} + \frac6{x^5} + \frac1{x^6}\right) \cdot e^{\frac{1}{x}}

Link to Laguerre polynomials

Generalized Laguerre polynomials L^{(\alpha)}_n(x) are linked to Lah numbers upon setting \alpha = -1 n! L_n^{(-1)}(x) =\sum_{k=0}^n L(n,k) (-x)^kThis formula is the default Laguerre polynomial in Umbral calculus convention.{{Cite journal |last1=Rota |first1=Gian-Carlo |last2=Kahaner |first2=D |last3=Odlyzko |first3=A |date=1973-06-01 |title=On the foundations of combinatorial theory. VIII. Finite operator calculus |journal=Journal of Mathematical Analysis and Applications |language=en |volume=42 |issue=3 |pages=684–760 |doi=10.1016/0022-247X(73)90172-8 |issn=0022-247X|doi-access=free }}

Practical application

In recent years, Lah numbers have been used in steganography for hiding data in images. Compared to alternatives such as DCT, DFT and DWT, it has lower complexity of calculation—O(n \log n)—of their integer coefficients.{{Cite journal |last1=Ghosal |first1=Sudipta Kr |last2=Mukhopadhyay |first2=Souradeep |last3=Hossain |first3=Sabbir |last4=Sarkar |first4=Ram |year=2020 |title=Application of Lah Transform for Security and Privacy of Data through Information Hiding in Telecommunication |journal=Transactions on Emerging Telecommunications Technologies |volume=32 |issue=2 |doi=10.1002/ett.3984|s2cid=225866797 }}{{Cite web |title=Image Steganography-using-Lah-Transform |url=https://in.mathworks.com/matlabcentral/fileexchange/78751-image-steganography-using-lah-transform |website=MathWorks|date=5 June 2020 }}

The Lah and Laguerre transforms naturally arise in the perturbative description of the chromatic dispersion.{{Cite journal|last1=Popmintchev|first1=Dimitar|last2=Wang|first2=Siyang|last3=Xiaoshi |first3=Zhang |last4=Stoev|first4=Ventzislav|last5=Popmintchev|first5=Tenio|date=2022-10-24 |title=Analytical Lah-Laguerre optical formalism for perturbative chromatic dispersion|journal=Optics Express|volume=30|issue=22|pages=40779–40808|doi=10.1364/OE.457139|doi-access=free|pmid=36299007 |bibcode=2022OExpr..3040779P}}{{cite arXiv|last1=Popmintchev|first1=Dimitar|last2=Wang|first2=Siyang|last3=Xiaoshi|first3=Zhang |last4=Stoev|first4=Ventzislav|last5=Popmintchev|first5=Tenio|date=2020-08-30|title= Theory of the Chromatic Dispersion, Revisited |class=physics.optics |eprint=2011.00066}}

In Lah-Laguerre optics, such an approach tremendously speeds up optimization problems.

See also

References