Lamb–Oseen vortex

{{Short description|Line vortex}}

In fluid dynamics, the Lamb–Oseen vortex models a line vortex that decays due to viscosity. This vortex is named after Horace Lamb and Carl Wilhelm Oseen.Oseen, C. W. (1912). Uber die Wirbelbewegung in einer reibenden Flussigkeit. Ark. Mat. Astro. Fys., 7, 14–26.{{Cite book |author1=Saffman, P. G. |author2=Ablowitz, Mark J. |author3=J. Hinch, E. |author4=Ockendon, J. R. |author5=Olver, Peter J. |author5-link=Peter J. Olver | title=Vortex dynamics | year=1992 | publisher=Cambridge University Press | location=Cambridge | isbn=0-521-47739-5 }} p. 253.

File:Lamb-Oseen vortex.svg

File:Lamb–Oseen vortex animation.gif

Mathematical description

Oseen looked for a solution for the Navier–Stokes equations in cylindrical coordinates (r,\theta,z) with velocity components (v_r,v_\theta,v_z) of the form

:v_r=0, \quad v_\theta=\frac{\Gamma}{2\pi r}g(r,t), \quad v_z=0.

where \Gamma is the circulation of the vortex core. Navier-Stokes equations lead to

:\frac{\partial g}{\partial t} = \nu\left(\frac{\partial^2 g}{\partial r^2} - \frac{1}{r} \frac{\partial g}{\partial r}\right)

which, subject to the conditions that it is regular at r=0 and becomes unity as r\rightarrow\infty, leads toDrazin, P. G., & Riley, N. (2006). The Navier–Stokes equations: a classification of flows and exact solutions (No. 334). Cambridge University Press.

:g(r,t) = 1-\mathrm{e}^{-r^2/4\nu t},

where \nu is the kinematic viscosity of the fluid. At t=0, we have a potential vortex with concentrated vorticity at the z axis; and this vorticity diffuses away as time passes.

The only non-zero vorticity component is in the z direction, given by

:\omega_z(r,t) = \frac{\Gamma}{4\pi \nu t} \mathrm{e}^{-r^2/4\nu t}.

The pressure field simply ensures the vortex rotates in the circumferential direction, providing the centripetal force

: {\partial p \over \partial r} = \rho {v^2 \over r},

where ρ is the constant density{{cite book | author=G.K. Batchelor |author-link=George Batchelor | year=1967 | title= An Introduction to Fluid Dynamics |publisher=Cambridge University Press }}

Generalized Oseen vortex

The generalized Oseen vortex may be obtained by looking for solutions of the form

:v_r=-\gamma(t) r, \quad v_\theta= \frac{\Gamma}{2\pi r}g(r,t), \quad v_z = 2\gamma(t) z

that leads to the equation

:\frac{\partial g}{\partial t} -\gamma r\frac{\partial g}{\partial r} = \nu \left(\frac{\partial^2 g}{\partial r^2} - \frac{1}{r} \frac{\partial g}{\partial r}\right).

Self-similar solution exists for the coordinate \eta=r/\varphi(t), provided \varphi\varphi' +\gamma \varphi^2=a, where a is a constant, in which case g=1-\mathrm{e}^{-a\eta^2/2\nu}. The solution for \varphi(t) may be written according to Rott (1958)Rott, N. (1958). On the viscous core of a line vortex. Zeitschrift für angewandte Mathematik und Physik ZAMP, 9(5-6), 543–553. as

:\varphi^2= 2a\exp\left(-2\int_0^t\gamma(s)\,\mathrm{d} s\right)\int_c^t\exp\left(2\int_0^u \gamma(s)\,\mathrm{d} s\right)\,\mathrm{d}u,

where c is an arbitrary constant. For \gamma=0, the classical Lamb–Oseen vortex is recovered. The case \gamma=k corresponds to the axisymmetric stagnation point flow, where k is a constant. When c=-\infty, \varphi^2=a/k, a Burgers vortex is a obtained. For arbitrary c, the solution becomes \varphi^2=a(1+\beta \mathrm{e}^{-2kt})/k, where \beta is an arbitrary constant. As t\rightarrow\infty, Burgers vortex is recovered.

See also

References

{{Reflist|30em}}

{{DEFAULTSORT:Lamb-Oseen vortex}}

Category:Vortices

Category:Equations of fluid dynamics