Landau–Lifshitz model#Landau–Lifshitz equation

{{For|another Landau–Lifshitz equation describing magnetism|Landau–Lifshitz–Gilbert equation}}

In solid-state physics, the Landau–Lifshitz equation (LLE), named for Lev Landau and Evgeny Lifshitz, is a partial differential equation describing time evolution of magnetism in solids, depending on 1 time variable and 1, 2, or 3 space variables.

Landau–Lifshitz equation

The LLE describes an anisotropic magnet. The equation is described in {{harv|Faddeev|Takhtajan|2007|loc=chapter 8}} as follows: it is an equation for a vector field S, in other words a function on R1+n taking values in R3. The equation depends on a fixed symmetric 3-by-3 matrix J, usually assumed to be diagonal; that is, J=\operatorname{diag}(J_{1}, J_{2}, J_{3}). The LLE is then given by Hamilton's equation of motion for the Hamiltonian

:H=\frac{1}{2}\int \left[\sum_i\left(\frac{\partial \mathbf{S}}{\partial x_i}\right)^{2}-J(\mathbf{S})\right]\, dx\qquad (1)

(where J(S) is the quadratic form of J applied to the vector S)

which is

: \frac{\partial \mathbf{S}}{\partial t} = \mathbf{S}\wedge \sum_i\frac{\partial^2 \mathbf{S}}{\partial x_i^{2}} + \mathbf{S}\wedge J\mathbf{S}.\qquad (2)

In 1+1 dimensions, this equation is

: \frac{\partial \mathbf{S}}{\partial t} = \mathbf{S}\wedge \frac{\partial^2 \mathbf{S}}{\partial x^{2}} + \mathbf{S}\wedge J\mathbf{S}.\qquad (3)

In 2+1 dimensions, this equation takes the form

: \frac{\partial \mathbf{S}}{\partial t} = \mathbf{S}\wedge \left(\frac{\partial^2 \mathbf{S}}{\partial x^{2}} + \frac{\partial^2 \mathbf{S}}{\partial y^{2}}\right)+ \mathbf{S}\wedge J\mathbf{S}\qquad (4)

which is the (2+1)-dimensional LLE. For the (3+1)-dimensional case, the LLE looks like

: \frac{\partial \mathbf{S}}{\partial t} = \mathbf{S}\wedge \left(\frac{\partial^2 \mathbf{S}}{\partial x^{2}} + \frac{\partial^2 \mathbf{S}}{\partial y^{2}}+\frac{\partial^2 \mathbf{S}}{\partial z^{2}}\right)+ \mathbf{S}\wedge J\mathbf{S}.\qquad (5)

Integrable reductions

In the general case LLE (2) is nonintegrable, but it admits two integrable reductions:

: a) in 1+1 dimensions, that is Eq. (3), it is integrable

: b) when J=0. In this case the (1+1)-dimensional LLE (3) turns into the continuous classical Heisenberg ferromagnet equation (see e.g. Heisenberg model (classical)) which is already integrable.

See also

References

  • {{citation|mr=2348643|last= Faddeev|first= Ludwig D.|last2= Takhtajan|first2= Leon A.|title= Hamiltonian methods in the theory of solitons|series= Classics in Mathematics|publisher= Springer|place= Berlin|year= 2007|pages= x+592 | ISBN= 978-3-540-69843-2 | doi=10.1007/978-3-540-69969-9}}
  • {{citation|ISBN= 978-981-277-875-8

|title=Landau-Lifshitz Equations |series=Frontiers of Research With the Chinese Academy of Sciences

|first=Boling |last=Guo |first2= Shijin |last2=Ding|year=2008

|publisher=World Scientific Publishing Company}}

  • Kosevich A.M., Ivanov B.A., Kovalev A.S. Nonlinear magnetization waves. Dynamical and topological solitons. – Kiev: Naukova Dumka, 1988. – 192 p.

{{DEFAULTSORT:Landau-Lifshitz model}}

Category:Magnetic ordering

Category:Partial differential equations

Category:Lev Landau