Landau distribution

{{Short description|Probability distribution}}

{{Probability distribution

| name = Landau distribution

| type = density

| pdf_image = 350px
\mu=0,\; c=\pi/2

| support = \mathbb{R}

| parameters = c \in(0,\infty)scale parameter

\mu\in(-\infty,\infty)location parameter

| char = \exp\left(it\mu -\frac{2ict}{\pi}\log|t| - c|t|\right)

| mean = Undefined

| variance = Undefined

| mgf = Undefined

| pdf = \frac{1}{\pi c}\int_0^\infty e^{-t}\cos\left(t\left(\frac{x-\mu}{c}\right) + \frac{2t}{\pi}\log\left(\frac{t}{c}\right)\right)\, dt

}}

In probability theory, the Landau distribution{{ cite journal | last = Landau | first = L. | title = On the energy loss of fast particles by ionization | journal = J. Phys. (USSR) |url=http://e-heritage.ru/Book/10093344 | volume = 8 | page = 201 | date = 1944 }} is a probability distribution named after Lev Landau.

Because of the distribution's "fat" tail, the moments of the distribution, such as mean or variance, are undefined. The distribution is a particular case of stable distribution.

Definition

The probability density function, as written originally by Landau, is defined by the complex integral:

:p(x) = \frac{1}{2 \pi i} \int_{a-i\infty}^{a+i\infty} e^{s \log(s) + x s}\, ds ,

where a is an arbitrary positive real number, meaning that the integration path can be any parallel to the imaginary axis, intersecting the real positive semi-axis, and \log refers to the natural logarithm.

In other words it is the Laplace transform of the function s^s.

The following real integral is equivalent to the above:

:p(x) = \frac{1}{\pi} \int_0^\infty e^{-t \log(t) - x t} \sin(\pi t)\, dt.

The full family of Landau distributions is obtained by extending the original distribution to a location-scale family of stable distributions with parameters \alpha=1 and \beta=1,{{ cite book | last = Gentle | first = James E. | title = Random Number Generation and Monte Carlo Methods | edition = 2nd | publisher = Springer | location = New York, NY | date = 2003 | series=Statistics and Computing | isbn =978-0-387-00178-4 | doi = 10.1007/b97336 |page=196}} with characteristic function:{{cite book|last1=Zolotarev|first1=V.M.|title=One-dimensional stable distributions|date=1986|publisher=American Mathematical Society|location=Providence, R.I.|isbn=0-8218-4519-5|url-access=registration|url=https://archive.org/details/onedimensionalst00zolo_0}}

:\varphi(t;\mu,c)=\exp\left(it\mu -\tfrac{2ict}{\pi}\log|t|-c|t|\right)

where c\in(0,\infty) and \mu\in(-\infty,\infty), which yields a density function:

:p(x;\mu,c) = \frac{1}{\pi c}\int_{0}^{\infty} e^{-t}\cos\left(t\left(\frac{x-\mu}{c}\right)+\frac{2t}{\pi}\log\left(\frac{t}{c}\right)\right)\, dt ,

Taking \mu=0 and c=\frac{\pi}{2} we get the original form of p(x) above.

Properties

Image:Landau_pdf.svg

  • Translation: If X \sim \textrm{Landau}(\mu,c)\, then X + m \sim \textrm{Landau}(\mu + m ,c) \,.
  • Scaling: If X \sim \textrm{Landau}(\mu,c)\, then aX \sim \textrm{Landau}(a\mu-\tfrac{2ac\log(a)}{\pi}, ac) \,.
  • Sum: If X \sim \textrm{Landau}(\mu_1, c_1) and Y \sim \textrm{Landau}(\mu_2, c_2) \, then X+Y \sim \textrm{Landau}(\mu_1+\mu_2, c_1+c_2).

These properties can all be derived from the characteristic function.

Together they imply that the Landau distributions are closed under affine transformations.

= Approximations =

In the "standard" case \mu=0 and c=\pi/2, the pdf can be approximated{{Cite web|url=https://reference.wolfram.com/language/ref/LandauDistribution.html|title=LandauDistribution—Wolfram Language Documentation}} using Lindhard theory which says:

:p(x+\log(x)-1+\gamma) \approx \frac{\exp(-1/x)}{x(1+x)},

where \gamma is Euler's constant.

A similar approximation {{ cite book | last1 = Behrens | first1 = S. E. | last2 = Melissinos | first2 = A.C. | title = Univ. of Rochester Preprint UR-776 (1981) }} of p(x;\mu,c) for \mu=0 and c=1 is:

:p(x) \approx \frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x + e^{-x}}{2}\right).

Related distributions

  • The Landau distribution is a stable distribution with stability parameter \alpha and skewness parameter \beta both equal to 1.

References