Lattice plane

{{Short description|Crystallographic concept}}

In crystallography, a lattice plane of a given Bravais lattice is any plane containing at least three noncollinear Bravais lattice points. Equivalently, a lattice plane is a plane whose intersections with the lattice (or any crystalline structure of that lattice) are periodic (i.e. are described by 2D Bravais lattices).Neil W. Ashcroft and N. David Mermin, Solid State Physics (Harcourt: New York, 1976). A family of lattice planes is a collection of equally spaced parallel lattice planes that, taken together, intersect all lattice points. Every family of lattice planes can be described by a set of integer Miller indices that have no common divisors (i.e. are relative prime). Conversely, every set of Miller indices without common divisors defines a family of lattice planes. If, on the other hand, the Miller indices are not relative prime, the family of planes defined by them is not a family of lattice planes, because not every plane of the family then intersects lattice points.{{Cite book|last=H.|first=Simon, Steven|url=http://worldcat.org/oclc/1267459045|title=The Oxford Solid State Basics |date=2020|publisher=Oxford University Press|isbn=978-0-19-968077-1|oclc=1267459045}}

Conversely, planes that are not lattice planes have aperiodic intersections with the lattice called quasicrystals; this is known as a "cut-and-project" construction of a quasicrystal (and is typically also generalized to higher dimensions).J. B. Suck, M. Schreiber, and P. Häussler, eds., Quasicrystals: An Introduction to Structure, Physical Properties, and Applications (Springer: Berlin, 2004).

References

Category:Crystallography

Category:Geometry

{{geometry-stub}}

{{Crystallography-stub}}