Lehmer matrix

In mathematics, particularly matrix theory, the n×n Lehmer matrix (named after Derrick Henry Lehmer) is the constant symmetric matrix defined by

:A_{ij} =

\begin{cases}

i/j, & j\ge i \\

j/i, & j

\end{cases}

Alternatively, this may be written as

:A_{ij} = \frac{\mbox{min}(i,j)}{\mbox{max}(i,j)}.

Properties

As can be seen in the examples section, if A is an n×n Lehmer matrix and B is an m×m Lehmer matrix, then A is a submatrix of B whenever m>n. The values of elements diminish toward zero away from the diagonal, where all elements have value 1.

The inverse of a Lehmer matrix is a tridiagonal matrix, where the superdiagonal and subdiagonal have strictly negative entries. Consider again the n×n A and m×m B Lehmer matrices, where m>n. A rather peculiar property of their inverses is that A−1 is nearly a submatrix of B−1, except for the A−1n,n element, which is not equal to B−1n,n.

A Lehmer matrix of order n has trace n.

Examples

The 2×2, 3×3 and 4×4 Lehmer matrices and their inverses are shown below.

:

\begin{array}{lllll}

A_2=\begin{pmatrix}

1 & 1/2 \\

1/2 & 1

\end{pmatrix};

&

A_2^{-1}=\begin{pmatrix}

4/3 & -2/3 \\

-2/3 & {\color{Brown}{\mathbf{4/3}}}

\end{pmatrix};

\\

\\

A_3=\begin{pmatrix}

1 & 1/2 & 1/3 \\

1/2 & 1 & 2/3 \\

1/3 & 2/3 & 1

\end{pmatrix};

&

A_3^{-1}=\begin{pmatrix}

4/3 & -2/3 & \\

-2/3 & 32/15 & -6/5 \\

& -6/5 & {\color{Brown}{\mathbf{9/5}}}

\end{pmatrix};

\\

\\

A_4=\begin{pmatrix}

1 & 1/2 & 1/3 & 1/4 \\

1/2 & 1 & 2/3 & 1/2 \\

1/3 & 2/3 & 1 & 3/4 \\

1/4 & 1/2 & 3/4 & 1

\end{pmatrix};

&

A_4^{-1}=\begin{pmatrix}

4/3 & -2/3 & & \\

-2/3 & 32/15 & -6/5 & \\

& -6/5 & 108/35 & -12/7 \\

& & -12/7 & {\color{Brown}{\mathbf{16/7}}}

\end{pmatrix}.

\\

\end{array}

See also

References

{{refbegin}}

  • {{cite journal |first1=M. |last1=Newman |first2=J. |last2=Todd |title=The evaluation of matrix inversion programs |journal=Journal of the Society for Industrial and Applied Mathematics |volume=6 |issue=4 |pages=466–476 |date=1958 |doi=10.1137/0106030 |jstor=2098717 }}

{{refend}}

{{Matrix classes}}

Category:Matrices (mathematics)