Leopoldt's conjecture

In algebraic number theory, Leopoldt's conjecture, introduced by {{harvs|txt|authorlink=Heinrich-Wolfgang Leopoldt|first=H.-W. |last=Leopoldt|year1=1962|year2=1975}}, states that the p-adic regulator of a number field does not vanish. The p-adic regulator is an analogue of the usual

regulator defined using p-adic logarithms instead of the usual logarithms, introduced by {{harvs|txt|authorlink=Heinrich-Wolfgang Leopoldt|first=H.-W. |last=Leopoldt|year=1962}}.

Formulation

Let K be a number field and for each prime P of K above some fixed rational prime p, let UP denote the local units at P and let U1,P denote the subgroup of principal units in UP. Set

: U_1 = \prod_{P|p} U_{1,P}.

Then let E1 denote the set of global units ε that map to U1 via the diagonal embedding of the global units in E.

Since E_1 is a finite-index subgroup of the global units, it is an abelian group of rank r_1 + r_2 - 1, where r_1 is the number of real embeddings of K and r_2 the number of pairs of complex embeddings. Leopoldt's conjecture states that the \mathbb{Z}_p-module rank of the closure of E_1 embedded diagonally in U_1 is also r_1 + r_2 - 1.

Leopoldt's conjecture is known in the special case where K is an abelian extension of \mathbb{Q} or an abelian extension of an imaginary quadratic number field: {{harvtxt|Ax|1965}} reduced the abelian case to a p-adic version of Baker's theorem, which was proved shortly afterwards by {{harvtxt|Brumer|1967}}.

{{harvs|txt|authorlink=Preda Mihăilescu|last=Mihăilescu|year1=2009|year2=2011}} has announced a proof of Leopoldt's conjecture for all CM-extensions of \mathbb{Q}.

{{harvs|txt|authorlink=Pierre Colmez|last=Colmez|year=1988}} expressed the residue of the p-adic Dedekind zeta function of a totally real field at s = 1 in terms of the p-adic regulator. As a consequence, Leopoldt's conjecture for those fields is equivalent to their p-adic Dedekind zeta functions having a simple pole at s = 1.

References

  • {{Citation | last1=Ax | first1=James | title=On the units of an algebraic number field | url=http://projecteuclid.org/euclid.ijm/1256059299 | mr=0181630 | year=1965 | journal=Illinois Journal of Mathematics | issn=0019-2082 | volume=9 | issue=4 | pages=584–589 | doi=10.1215/ijm/1256059299 | zbl=0132.28303 | doi-access=free }}
  • {{Citation | last1=Brumer | first1=Armand | title=On the units of algebraic number fields | doi=10.1112/S0025579300003703 | mr=0220694 | year=1967 | journal=Mathematika | issn=0025-5793 | volume=14 | issue=2 | pages=121–124 | zbl=0171.01105 }}
  • {{Citation | last1=Colmez | first1=Pierre | title=Résidu en s=1 des fonctions zêta p-adiques | doi=10.1007/BF01389373 | mr=922806 | year=1988 | journal=Inventiones Mathematicae | issn=0020-9910 | volume=91 | issue=2 | pages=371–389 | zbl=0651.12010 | bibcode=1988InMat..91..371C | s2cid=118434651 }}
  • {{eom|id=l/l110120|first=M.|last= Kolster}}
  • {{Citation | last1=Leopoldt | first1=Heinrich-Wolfgang | author-link=Heinrich-Wolfgang Leopoldt | title=Zur Arithmetik in abelschen Zahlkörpern | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002179482 | mr=0139602 | year=1962 | journal=Journal für die reine und angewandte Mathematik | issn=0075-4102 | volume=1962 | issue=209 | pages=54–71 | doi=10.1515/crll.1962.209.54 | zbl=0204.07101 | s2cid=117123955 }}
  • {{Citation |first=H. W. |last=Leopoldt | author-link=Heinrich-Wolfgang Leopoldt |title=Eine p-adische Theorie der Zetawerte II |journal=Journal für die reine und angewandte Mathematik |volume=1975 |year=1975 |issue=274/275 |pages=224–239 |doi=10.1515/crll.1975.274-275.224 | zbl=0309.12009 |s2cid=118013793 }}.
  • {{Citation |last=Mihăilescu |first=Preda |year=2009 |title=The T and T* components of Λ - modules and Leopoldt's conjecture |arxiv=0905.1274 |bibcode=2009arXiv0905.1274M}}
  • {{Citation|last=Mihăilescu |first=Preda |year=2011|arxiv=1105.4544 |title=Leopoldt's Conjecture for CM fields|bibcode=2011arXiv1105.4544M}}
  • {{Neukirch et al. CNF|edition=2}}
  • {{Citation |first=Lawrence C. |last=Washington |title=Introduction to Cyclotomic Fields |edition=Second |year=1997 |location=New York |publisher=Springer |isbn=0-387-94762-0 | zbl=0966.11047 }}.

Category:Algebraic number theory

Category:Conjectures

Category:Unsolved problems in number theory