Lie-* algebra

{{format footnotes |date=May 2024}}

In mathematics, a Lie-* algebra is a D-module with a Lie* bracket. They were introduced by Alexander Beilinson and Vladimir Drinfeld ({{harvtxt|Beilinson|Drinfeld|2004|loc=section 2.5.3}}), and are similar to the conformal algebras discussed by {{harvtxt|Kac|1998}} and to vertex Lie algebras.

References

  • {{Citation | last1=Beilinson | first1=Alexander | last2=Drinfeld | first2=Vladimir | title=Chiral algebras | url=https://books.google.com/books?id=yHZh3p-kFqQC | publisher=American Mathematical Society | location=Providence, R.I. | series=American Mathematical Society Colloquium Publications | isbn=978-0-8218-3528-9 |mr=2058353 | year=2004 | volume=51}}
  • {{Citation | author1-link=Victor Kac | last1=Kac | first1=Victor | title=Vertex algebras for beginners | url=https://books.google.com/books?id=PIhm9-37IlUC | publisher=American Mathematical Society | location=Providence, R.I. | edition=2nd | series=University Lecture Series | isbn=978-0-8218-1396-6 |mr=1651389 | year=1998 | volume=10}}

Category:Lie algebras

{{algebra-stub}}