Light-oxygen-voltage-sensing domain

A Light-oxygen-voltage-sensing domain (LOV domain) is a protein sensor used by a large variety of higher plants, microalgae, fungi and bacteria to sense environmental conditions. In higher plants, they are used to control phototropism, chloroplast relocation, and stomatal opening, whereas in fungal organisms, they are used for adjusting the circadian temporal organization of the cells to the daily and seasonal periods. They are a subset of PAS domains.

Chromophore

Common to all LOV proteins is the blue-light sensitive flavin chromophore, which in the signaling state is covalently linked to the protein core via an adjacent cysteine residue. LOV domains are e.g. encountered in phototropins, which are blue-light-sensitive protein complexes regulating a great diversity of biological processes in higher plants as well as in micro-algae.{{cite journal |last1=Veetil |first1=S.K |last2=Mittal |first2=C |last3=Ranjan |first3=P |last4=Kateriya |first4=S |title=A conserved isoleucine in the LOV1 domain of a novel phototropin from the marine alga Ostreococcus tauri modulates the dark state recovery of the domain |journal=Biochim Biophys Acta |date=July 2011 |volume=1810 |issue=7 |pages=675–82 |doi=10.1016/j.bbagen.2011.04.008 |pmid=21554927 |url=https://www.sciencedirect.com/science/article/pii/S0304416511000857|url-access=subscription }} Phototropins are composed of two LOV domains, each containing a non-covalently bound flavin mononucleotide (FMN) chromophore in its dark-state form, and a C-terminal Ser-Thr kinase.

Upon blue-light absorption, a covalent bond between the FMN chromophore and an adjacent reactive cysteine residue of the apo-protein is formed in the LOV2 domain. This subsequently mediates the activation of the kinase, which induces a signal in the organism through phototropin autophosphorylation.

While the photochemical reactivity of the LOV2 domain has been found to be essential for the activation of the kinase, the in vivo functionality of the LOV1 domain within the protein complex still remains unclear.

Fungus

In case of the fungus Neurospora crassa, the circadian clock is controlled by two light-sensitive domains, known as the white-collar-complex (WCC) and the LOV domain vivid (VVD-LOV). WCC is primarily responsible for the light-induced transcription on the control-gene frequency (FRQ) under day-light conditions, which drives the expression of VVD-LOV and governs the negative feedback loop onto the circadian clock. By contrast, the role of VVD-LOV is mainly modulatory and does not directly affect FRQ.

Natural and engineered functions of LOV domains

LOV domains have been found to control gene expression through DNA binding and

to be involved in redox-dependent regulation, like e.g. in the bacterium Rhodobacter sphaeroides. Notably, LOV-based optogenetic tools {{cite journal | vauthors = Wittmann T, Dema A, van Haren J| title = Lights, cytoskeleton, action: Optogenetic control of cell dynamics | date = May 2020 |publisher = Elsevier Ltd. | doi = 10.1016/j.ceb.2020.03.003| journal = Current Opinion in Cell Biology | volume = 66 | pages = 1–10 | pmid = 32371345 | pmc = 7577957 | doi-access = free }} have been gaining wide popularity in recent years to control a myriad of cellular events, including cell motility,{{Cite journal|title = A genetically encoded photoactivatable Rac controls the motility of living cells|journal = Nature|date = 2009-01-01|pmc = 2766670|pmid = 19693014|volume = 461|issue = 7260|pages = 104–8|doi = 10.1038/nature08241|first1 = Yi I.|last1 = Wu|first2 = Daniel|last2 = Frey|first3 = Oana I.|last3 = Lungu|first4 = Angelika|last4 = Jaehrig|first5 = Ilme|last5 = Schlichting |authorlink5=Ilme Schlichting |first6 = Brian|last6 = Kuhlman|first7 = Klaus M.|last7 = Hahn|bibcode = 2009Natur.461..104W}} subcellular organelle distribution,{{Cite journal|title = Optogenetic control of organelle transport and positioning|journal = Nature|date = 2015-01-01|volume = 518|issue = 7537|pages = 111–4|doi = 10.1038/nature14128|pmid = 25561173|first1 = Petra|last1 = van Bergeijk|first2 = Max|last2 = Adrian|first3 = Casper C.|last3 = Hoogenraad|first4 = Lukas C.|last4 = Kapitein|pmc=5063096|bibcode = 2015Natur.518..111V}} formation of membrane contact sites,{{Cite journal|title = Proteomic mapping of ER–PM junctions identifies STIMATE as a regulator of Ca2+ influx|journal = Nature Cell Biology|volume = 17|issue = 10|pages = 1339–47|date = 2015-01-01|doi = 10.1038/ncb3234|pmid = 26322679|first1 = Ji|last1 = Jing|first2 = Lian|last2 = He|first3 = Aomin|last3 = Sun|first4 = Ariel|last4 = Quintana|first5 = Yuehe|last5 = Ding|first6 = Guolin|last6 = Ma|first7 = Peng|last7 = Tan|first8 = Xiaowen|last8 = Liang|first9 = Xiaolu|last9 = Zheng|pmc=4589512}} microtubule dynamics,{{cite journal | vauthors = van Haren J, Charafeddine RA, Ettinger A, Wang H, Hahn KM, Wittmann T| title = Local control of intracellular microtubule dynamics by EB1 photodissociation | date = Mar 2018 |publisher = Nature Research. | doi = 10.1038/s41556-017-0028-5| journal = Nature Cell Biology| volume = 20 | issue = 3 | pages = 252–261 | pmid = 29379139 | pmc = 5826794 }} transcription,{{Cite journal|last1=Baaske|first1=Julia|last2=Gonschorek|first2=Patrick|last3=Engesser|first3=Raphael|last4=Dominguez-Monedero|first4=Alazne|last5=Raute|first5=Katrin|last6=Fischbach|first6=Patrick|last7=Müller|first7=Konrad|last8=Cachat|first8=Elise|last9=Schamel|first9=Wolfgang W. A.|last10=Minguet|first10=Susana|last11=Davies|first11=Jamie A.|date=2018-10-09|title=Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells|journal=Scientific Reports|volume=8|issue=1|pages=15024|doi=10.1038/s41598-018-32929-7|pmid=30301909|pmc=6177421|bibcode=2018NatSR...815024B|issn=2045-2322}} and protein degradation.{{Cite journal|title = A LOV2 Domain-Based Optogenetic Tool to Control Protein Degradation and Cellular Function|journal = Chemistry & Biology|issn = 1074-5521|pmid = 23601651|pages = 619–626|volume = 20|issue = 4|doi = 10.1016/j.chembiol.2013.03.005|first1 = Christian|last1 = Renicke|first2 = Daniel|last2 = Schuster|first3 = Svetlana|last3 = Usherenko|first4 = Lars-Oliver|last4 = Essen|first5 = Christof|last5 = Taxis|year = 2013|doi-access = free}}

See also

References

{{Reflist|35em|refs=

{{cite book|author=Edmunds, L. N. J. |title=Cellular and Molecular Bases of Biological Clocks: Models and Mechanisms for Circadian Timekeeping|place=New York|publisher= Springer Verlag|year= 1988}}

{{cite journal|doi=10.1038/ncomms1121|title=Mechanism of signal transduction of the LOV2-Jα photosensor from Avena sativa|journal=Nature Communications|volume=1|issue=8|pages=122|year=2010|last1=Peter|first1=Emanuel|last2=Dick|first2=Bernhard|last3=Baeurle|first3=Stephan A.|pmid=21081920|bibcode=2010NatCo...1..122P|doi-access=free}}

{{cite journal|doi=10.1063/1.3697370|pmid=22462840|title=A novel computer simulation method for simulating the multiscale transduction dynamics of signal proteins|journal=The Journal of Chemical Physics|volume=136|issue=12|pages=124112|year=2012|last1=Peter|first1=Emanuel|last2=Dick|first2=Bernhard|last3=Baeurle|first3=Stephan A.|bibcode=2012JChPh.136l4112P|url=https://epub.uni-regensburg.de/26504/1/Pacs19.pdf}}

{{cite journal|author=Hegemann, P. |title=Algal sensory photoreceptors|journal=Annual Review of Plant Biology|volume= 59|pages=167–89 |year=2008|issue=1 |pmid=18444900|doi=10.1146/annurev.arplant.59.032607.092847|bibcode=2008AnRPB..59..167H }}

{{cite journal|author=Christie, J. M. |title=Phototropin blue-light receptors|journal=Annual Review of Plant Biology|volume= 58|pages= 21–45 |year=2007|issue=1 |pmid=17067285|doi=10.1146/annurev.arplant.58.032806.103951|bibcode=2007AnRPB..58...21C }}

{{cite journal|author=Briggs, W. R.|title=The LOV domain: A chromophore module servicing multiple photoreceptors|journal=Journal of Biomedical Science|volume= 14|issue=4|pages= 499–504 |year=2007|pmid=17380429|doi=10.1007/s11373-007-9162-6}}

{{cite journal|doi= 10.1002/bip.20510|pmid= 16552739|title= The photochemistry of the light-, oxygen-, and voltage-sensitive domains in the algal blue light receptor phot|journal= Biopolymers|volume= 82|issue= 4|pages= 373–8|year= 2006|last1= Kottke|first1= Tilman|last2= Hegemann|first2= Peter|last3= Dick|first3= Bernhard|last4= Heberle|first4= Joachim}}

{{cite journal|author1=Jones, M. A. |author2=Feeney, K. A. |author3=Kelly, S. M. |author4=Christie, J. M. |title=Mutational analysis of phototropin 1 provides insights into the mechanism underlying LOV2 signal transmission|journal=Journal of Biological Chemistry|volume= 282|issue=9|pages= 6405–14 |year=2007|pmid=17164248|doi=10.1074/jbc.M605969200|doi-access=free}}

{{cite journal|author1=Matsuoka, D. |author2=Tokutomi, S. |title=Blue light-regulated molecular switch of Ser/Thr kinase in phototropin|doi=10.1073/pnas.0506402102|pmid=16150710|pmc=1198998|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=102|issue=37|pages= 13337–42 |year=2005|bibcode=2005PNAS..10213337M |doi-access=free }}

{{cite journal|doi= 10.1002/prot.23213|title= Illuminating the early signaling pathway of a fungal light-oxygen-voltage photoreceptor|journal= Proteins: Structure, Function, and Bioinformatics|volume= 80|issue= 2|pages= 471–481|year= 2012|last1= Peter|first1= Emanuel|last2= Dick|first2= Bernhard|last3= Baeurle|first3= Stephan A.|pmid= 22081493|s2cid= 206406322}}

{{cite journal|author1=Heintzen, C. |author2=Loros, J. J. |author3=Dunlap, J. C. |title=The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting|journal=Cell|volume= 104|issue=3|pages= 453–64 |year=2001|pmid=11239402|doi=10.1016/s0092-8674(01)00232-x|s2cid=18003169 |doi-access=free}}

{{cite journal|author1=Lee, K. |author2=Dunlap, J. C. |author3=Loros, J. J. |title=Roles for WHITE COLLAR-1 in circadian and general photoperception in Neurospora crassa|journal=Genetics|volume= 163|issue=1|pages= 103–14 |year=2003|doi=10.1093/genetics/163.1.103 |pmid=12586700|pmc=1462414}}

{{cite journal|author1=Gardner, G. F. |author2=Feldman, J. F.|title=The frq locus in Neurospora crassa: A key element in circadian clock organization|journal=Genetics|volume= 96|issue=4|pages=877–86 |year=1980|doi=10.1093/genetics/96.4.877|pmid=6455327|pmc=1219306}}

{{cite journal|author1=Hunt, S. M. |author2=Thompson, S. |author3=Elvin, M. |author4=Heintzen, C. |title=VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora|journal=Proceedings of the National Academy of Sciences of the United States of America|volume= 107|issue=38|pages= 16709–14|year=2010|pmid=20807745|pmc=2944716|doi=10.1073/pnas.1009474107|bibcode=2010PNAS..10716709H |doi-access=free }}

{{cite journal|doi= 10.1021/bi3015373|pmid= 23252338|title= Light-Induced Subunit Dissociation by a Light–Oxygen–Voltage Domain Photoreceptor from Rhodobacter sphaeroides|journal= Biochemistry|volume= 52|issue= 2|pages= 378–91|year= 2013|last1= Conrad|first1= Karen S.|last2= Bilwes|first2= Alexandrine M.|last3= Crane|first3= Brian R.|pmc=3582384}}

{{cite journal|doi= 10.1099/mic.0.054700-0|title= Role of a short light, oxygen, voltage (LOV) domain protein in blue light- and singlet oxygen-dependent gene regulation in Rhodobacter sphaeroides|journal= Microbiology|volume= 158|issue= 2|pages= 368–379|year= 2011|last1= Metz|first1= S.|last2= Jager|first2= A.|last3= Klug|first3= G.|pmid=22053008|doi-access= free}}

}}

{{Protein domains}}

Category:Sensory receptors

Category:Signal transduction

Category:Molecular biology

Category:Plant physiology