Lindenbaum's lemma

In mathematical logic, Lindenbaum's lemma, named after Adolf Lindenbaum, states that any consistent theory of predicate logic can be extended to a complete consistent theory. The lemma is a special case of the ultrafilter lemma for Boolean algebras, applied to the Lindenbaum algebra of a theory.

Uses

It is used in the proof of Gödel's completeness theorem, among other places.{{cn|reason=Is it used in Gödel's own proof or just Henkin's?|date=February 2021}}

Extensions

The effective version of the lemma's statement, "every consistent computably enumerable theory can be extended to a complete consistent computably enumerable theory," fails (provided Peano arithmetic is consistent) by Gödel's incompleteness theorem.

History

The lemma was not published by Adolf Lindenbaum; it is originally attributed to him by Alfred Tarski.Tarski, A. On Fundamental Concepts of Metamathematics, 1930.

Notes

References

  • {{cite book | last1=Crossley | first1=J.N. | last2=Ash | first2=C.J. | last3=Brickhill | first3=C.J. | last4=Stillwell | first4=J.C. | last5=Williams | first5=N.H. | title=What is mathematical logic? | zbl=0251.02001 | location=London-Oxford-New York | publisher=Oxford University Press | year=1972 | isbn=0-19-888087-1 | page=16 }}

Category:Mathematical logic

Category:Lemmas

{{logic-stub}}