Linear relation

{{Short description|Type of mathematical equation}}

In linear algebra, a linear relation, or simply relation, between elements of a vector space or a module is a linear equation that has these elements as a solution.

More precisely, if e_1,\dots,e_n are elements of a (left) module {{mvar|M}} over a ring {{mvar|R}} (the case of a vector space over a field is a special case), a relation between e_1,\dots,e_n is a sequence (f_1,\dots, f_n) of elements of {{mvar|R}} such that

:f_1e_1+\dots+f_ne_n=0.

The relations between e_1,\dots,e_n form a module. One is generally interested in the case where e_1,\dots,e_n is a generating set of a finitely generated module {{mvar|M}}, in which case the module of the relations is often called a syzygy module of {{mvar|M}}. The syzygy module depends on the choice of a generating set, but it is unique up to the direct sum with a free module. That is, if S_1 and S_2 are syzygy modules corresponding to two generating sets of the same module, then they are stably isomorphic, which means that there exist two free modules L_1 and L_2 such that S_1\oplus L_1 and S_2\oplus L_2 are isomorphic.

Higher order syzygy modules are defined recursively: a first syzygy module of a module {{mvar|M}} is simply its syzygy module. For {{math|k > 1}}, a {{mvar|k}}th syzygy module of {{mvar|M}} is a syzygy module of a {{math|(k – 1)}}-th syzygy module. Hilbert's syzygy theorem states that, if R=K[x_1,\dots,x_n] is a polynomial ring in {{mvar|n}} indeterminates over a field, then every {{mvar|n}}th syzygy module is free. The case {{math|1=n = 0}} is the fact that every finite dimensional vector space has a basis, and the case {{math|1=n = 1}} is the fact that {{math|K[x]}} is a principal ideal domain and that every submodule of a finitely generated free {{math|K[x]}} module is also free.

The construction of higher order syzygy modules is generalized as the definition of free resolutions, which allows restating Hilbert's syzygy theorem as a polynomial ring in {{mvar|n}} indeterminates over a field has global homological dimension {{mvar|n}}.

If {{mvar|a}} and {{mvar|b}} are two elements of the commutative ring {{mvar|R}}, then {{math|(b, –a)}} is a relation that is said trivial. The module of trivial relations of an ideal is the submodule of the first syzygy module of the ideal that is generated by the trivial relations between the elements of a generating set of an ideal. The concept of trivial relations can be generalized to higher order syzygy modules, and this leads to the concept of the Koszul complex of an ideal, which provides information on the non-trivial relations between the generators of an ideal.

Basic definitions

Let {{mvar|R}} be a ring, and {{mvar|M}} be a left {{mvar|R}}-module. A linear relation, or simply a relation between {{mvar|k}} elements x_1, \dots, x_k of {{mvar|M}} is a sequence (a_1, \dots, a_k) of elements of {{mvar|R}} such that

:a_1x_1+\dots+ a_kx_k=0.

If x_1, \dots, x_k is a generating set of {{mvar|M}}, the relation is often called a syzygy of {{mvar|M}}. It makes sense to call it a syzygy of M without regard to x_1,..,x_k because, although the syzygy module depends on the chosen generating set, most of its properties are independent; see {{slink||Stable properties}}, below.

If the ring {{mvar|R}} is Noetherian, or, at least coherent, and if {{mvar|M}} is finitely generated, then the syzygy module is also finitely generated. A syzygy module of this syzygy module is a second syzygy module of {{mvar|M}}. Continuing this way one can define a {{mvar|k}}th syzygy module for every positive integer {{mvar|k}}.

Hilbert's syzygy theorem asserts that, if {{mvar|M}} is a finitely generated module over a polynomial ring K[x_1, \dots, x_n] over a field, then any {{mvar|n}}th syzygy module is a free module.

Stable properties

{{hatnote|In this section, all modules are supposed to be finitely generated. That is the ring {{mvar|R}} is supposed Noetherian, or, at least, coherent.}}

Generally speaking, in the language of K-theory, a property is stable if it becomes true by making a direct sum with a sufficiently large free module. A fundamental property of syzygies modules is that there are "stably independent" of choices of generating sets for involved modules. The following result is the basis of these stable properties.

{{math theorem|Proposition|Let \{x_1,\dots, x_m\} be a generating set of an {{mvar|R}}-module {{mvar|M}}, and y_1, \dots, y_n be other elements of {{mvar|M}}. The module of the relations between x_1,\dots, x_m, y_1,\dots, y_n is the direct sum of the module of the relations between x_1,\dots, x_m, and a free module of rank {{mvar|n}}.

}}

Proof. As \{x_1,\dots, x_m\} is a generating set, each y_i can be written

\textstyle y_i=\sum \alpha_{i,j}x_j.

This provides a relation r_i between x_1,\dots, x_m, y_1,\dots, y_n. Now, if r=(a_1, \dots,a_m, b_1,\dots,b_n) is any relation, then

\textstyle r-\sum b_ir_i

is a relation between the x_1,\dots, x_m only. In other words, every relation between x_1,\dots, x_m, y_1,\dots, y_n is a sum of a relation between x_1,\dots, x_m, and a linear combination of the r_is. It is straightforward to prove that this decomposition is unique, and this proves the result. \blacksquare

This proves that the first syzygy module is "stably unique". More precisely, given two generating sets S_1 and S_2 of a module {{mvar|M}}, if S_1 and S_2 are the corresponding modules of relations, then there exist two free modules L_1 and L_2 such that S_1\oplus L_1 and S_2\oplus L_2 are isomorphic. For proving this, it suffices to apply twice the preceding proposition for getting two decompositions of the module of the relations between the union of the two generating sets.

For obtaining a similar result for higher syzygy modules, it remains to prove that, if {{mvar|M}} is any module, and {{mvar|L}} is a free module, then {{mvar|M}} and {{math|ML}} have isomorphic syzygy modules. It suffices to consider a generating set of {{math|ML}} that consists of a generating set of {{mvar|M}} and a basis of {{mvar|L}}. For every relation between the elements of this generating set, the coefficients of the basis elements of {{mvar|L}} are all zero, and the syzygies of {{math|ML}} are exactly the syzygies of {{mvar|M}} extended with zero coefficients. This completes the proof to the following theorem.

{{math theorem|For every positive integer {{mvar|k}}, the {{mvar|k}}th syzygy module of a given module depends on choices of generating sets, but is unique up to the direct sum with a free module. More precisely, if S_1 and S_2 are {{mvar|k}}th syzygy modules that are obtained by different choices of generating sets, then there are free modules L_1 and L_2 such that S_1\oplus L_1 and S_2\oplus L_2 are isomorphic.

}}

Relationship with free resolutions

Given a generating set g_1,\dots,g_n of an {{mvar|R}}-module, one can consider a free module of {{mvar|L}} of basis G_1,\dots,G_n, where G_1,\dots,G_n are new indeterminates. This defines an exact sequence

:L\longrightarrow M \longrightarrow 0,

where the left arrow is the linear map that maps each G_i to the corresponding g_i. The kernel of this left arrow is a first syzygy module of {{mvar|M}}.

One can repeat this construction with this kernel in place of {{mvar|M}}. Repeating again and again this construction, one gets a long exact sequence

:\cdots\longrightarrow L_k\longrightarrow L_{k-1} \longrightarrow \cdots\longrightarrow L_0 \longrightarrow M \longrightarrow 0,

where all L_i are free modules. By definition, such a long exact sequence is a free resolution of {{mvar|M}}.

For every {{math|k ≥ 1}}, the kernel S_k of the arrow starting from L_{k-1} is a {{mvar|k}}th syzygy module of {{mvar|M}}. It follows that the study of free resolutions is the same as the study of syzygy modules.

A free resolution is finite of length {{math|≤ n}} if S_n is free. In this case, one can take L_n = S_n, and L_k = 0 (the zero module) for every {{math|k > n}}.

This allows restating Hilbert's syzygy theorem: If R=K[x_1, \dots, x_n] is a polynomial ring in {{mvar|n}} indeterminates over a field {{mvar|K}}, then every free resolution is finite of length at most {{mvar|n}}.

The global dimension of a commutative Noetherian ring is either infinite, or the minimal {{mvar|n}} such that every free resolution is finite of length at most {{mvar|n}}. A commutative Noetherian ring is regular if its global dimension is finite. In this case, the global dimension equals its Krull dimension. So, Hilbert's syzygy theorem may be restated in a very short sentence that hides much mathematics: A polynomial ring over a field is a regular ring.

Trivial relations

In a commutative ring {{mvar|R}}, one has always {{math|1=abba = 0}}. This implies trivially that {{math|(b, –a)}} is a linear relation between {{mvar|a}} and {{mvar|b}}. Therefore, given a generating set g_1, \dots,g_k of an ideal {{mvar|I}}, one calls trivial relation or trivial syzygy every element of the submodule the syzygy module that is generated by these trivial relations between two generating elements. More precisely, the module of trivial syzygies is generated by the relations

:r_{i,j}= (x_1,\dots,x_r)

such that x_i=g_j, x_j=-g_i, and x_h=0 otherwise.

History

The word syzygy came into mathematics with the work of Arthur Cayley.1847[Cayley 1847] A. Cayley, “On the theory of involution in geometry”, Cambridge Math. J. 11 (1847), 52–61. See also Collected Papers, Vol. 1 (1889), 80–94, Cambridge Univ. Press, Cambridge. In that paper, Cayley used it in the theory of resultants and discriminants.[Gel’fand et al. 1994] I. M. Gel’fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser, Boston, 1994.

As the word syzygy was used in astronomy to denote a linear relation between planets, Cayley used it to denote linear relations between minors of a matrix, such as, in the case of a 2×3 matrix:

:a\,\begin{vmatrix}b&c\\e&f\end{vmatrix} - b\,\begin{vmatrix}a&c\\d&f\end{vmatrix} +c\,\begin{vmatrix}a&b\\d&e\end{vmatrix}=0.

Then, the word syzygy was popularized (among mathematicians) by David Hilbert in his 1890 article, which contains three fundamental theorems on polynomials, Hilbert's syzygy theorem, Hilbert's basis theorem and Hilbert's Nullstellensatz.

In his article, Cayley makes use, in a special case, of what was laterSerre, Jean-Pierre Algèbre locale. Multiplicités. (French) Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathematics, 11 Springer-Verlag, Berlin-New York 1965 vii+188 pp.; this is the published form of mimeographed notes from Serre's lectures at the College de France in 1958. called the Koszul complex, after a similar construction in differential geometry by the mathematician Jean-Louis Koszul.

Notes

{{Reflist}}

References

  • {{cite book | last1=Cox | first1=David | last2=Little | first2=John | last3=O’Shea | first3=Donal | title=Undergraduate Texts in Mathematics | chapter=Ideals, Varieties, and Algorithms | publisher=Springer New York | location=New York, NY | year=2007 | isbn=978-0-387-35650-1 | issn=0172-6056 | doi=10.1007/978-0-387-35651-8 }}
  • {{cite book |last1=Cox | first1=David | last2=Little | first2=John | last3=O’Shea | first3=Donal | title=Graduate Texts in Mathematics | chapter=Using Algebraic Geometry | publisher=Springer-Verlag | location=New York | year=2005 | isbn=0-387-20706-6 | doi=10.1007/b138611 }}
  • {{cite book|author-link=David Eisenbud|last1=Eisenbud|first1=David|title=Commutative Algebra with a View Toward Algebraic Geometry|series=Graduate Texts in Mathematics|volume=150|publisher=Springer-Verlag|year=1995|isbn=0-387-94268-8|doi=10.1007/978-1-4612-5350-1}}
  • David Eisenbud, The Geometry of Syzygies, Graduate Texts in Mathematics, vol. 229, Springer, 2005.

category:Commutative algebra

category:Homological algebra

category:Linear algebra

category:Polynomials