List of alternative nonmetal classes#Two classes
{{short description|Non metallic elements}}
class="wikitable floatright" style="margin-left: 0.5em;" |
valign=bottom
| style="border-bottom: none" | Metalloid | style="border-bottom: none" | Unclassified | style="border-bottom: none" | Nonmetal | style="border-bottom: none" | Noble gas |
valign=top
| style="border-top:none; border-bottom:none" | B, Si, Ge, As, Sb, Te, Po, At | style="border-top:none; border-bottom:none" | H, C, N, P, O, S, Se | style="border-top:none; border-bottom:none" | F, Cl, Br, I | style="border-top:none; border-bottom:none" | He, Ne, Ar, Kr, Xe, Rn |
style="border-bottom: none; border-top:none"|100px
| style="border-bottom: none; border-top:none" |60 px | style="border-bottom: none; border-top:none" |60px | style="border-bottom: none; border-top:none" |100px |
valign=top
| style="border-top:none"| Boron is an example | style="border-top:none"| Oxygen in | style="border-top:none"| Bromine | style="border-top:none"| A krypton-filled |
In chemistry, after nonmetallic elements such as silicon, chlorine, and helium are classed as either metalloids, halogens, or noble gases, the remaining unclassified nonmetallic elements are hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur and selenium.
The nonmetallic elements are sometimes instead divided into two to seven alternative classes or sets according to, for example, electronegativity; the relative homogeneity of the halogens; molecular structure; the peculiar nature of hydrogen; the corrosive nature of oxygen and the halogens; their respective groups; and variations thereupon.
Classification science
Classes provided an economy of description and are beneficial to structuring knowledge and understanding of science.Jones 2010, p. 169 The distinction between classes is not absolute. Boundary overlaps can occur as outlying elements in each class show or begin to show less-distinct, hybrid-like, or atypical properties. As expressed by Nelson:Nelson 2011, p. 57
:"…care needs to be taken to remember that…[this classification scheme] is only an approximation, and can only be used as a rough guide to the properties of the elements. Provided that this is done, however, it constitutes a very useful classification, and although purists often despise it because of its approximate nature, the fact is that practising chemists make a great deal of use of it, if only subconsciously, in thinking of the chemistry of different elements."
Two classes
{{hatnote|Examples have author labels for convenience, rather than precedence}}
class="wikitable floatright" style="margin-left: 0.5em;" |
style="border-bottom: none" | Reactive nonmetal
| style="border-bottom: none; vertical-align: text-bottom" | Noble gas |
style="border-top:none" | H, C, N, P, O, S, Se, F, Cl, Br, I
| style="border-top:none" | He, Ne, Ar, Kr, Xe, Rn |
Rudakiya. The nonmetals are simply classified according to their inclination to form chemical compounds. The halogens are not distinguished.Rudakiya & Patel 2021, p. 37
Three classes
class="wikitable floatright" style="margin-left: 0.5em;" |
style="border-bottom: none" | Electronegative nonmetal | style="border-bottom: none" | Very electronegative | style="border-bottom: none; vertical-align: text-bottom" | Noble gas |
style="border-top:none" | H, C, P, S, Se, I
| style="border-top:none" | N, O, F, Cl, Br | style="border-top:none" | He, Ne, Ar, Kr, Xe, Rn |
Wulfsberg. The nonmetals are divided based on a loose correlation between electronegativity and oxidizing power. Very electronegative nonmetals have electronegativity values over 2.8; electronegative nonmetals have values of 1.9 to 2.8.{{sfn|Wulfsberg|1987|pp=159–160}}
class="wikitable floatright" style="margin-left: 0.5em;" |
style="border-bottom: none" | Other nonmetal
| style="border-bottom: none" | Halogen | style="border-bottom: none" | Noble gas |
style="border-top:none" | H, C, N, P, O, S, Se
| style="border-top:none" | F, Cl, Br, I | style="border-top:none" | He, Ne, Ar, Kr, Xe, Rn |
class="wikitable floatright" style="margin-left: 0.5em;" |
style="border-bottom: none" | Polyatomic element | colspan="2" style="border-bottom: none; vertical-align: text-top" | Diatomic element | style="border-bottom: none; vertical-align: text-bottom" | Monatomic |
style="border-top:none" | C, P, S, Se
| colspan="2" style="border-top:none" | H, N, O, F, Cl, Br, I | style="border-top:none" | He, Ne, Ar, Kr, Xe, Rn |
Bettelheim et al. The nonmetals are distinguished based on the molecular structures of their most thermodynamically stable forms in ambient conditions.Bettelheim et al. 2016, p. 33—34 Polyatomic nonmetals form structures or molecules in which each atom has two or three nearest neighbours (carbon: Cx; phosphorus: P4; sulfur: S8; selenium: Sex); diatomic nonmetals form molecules in which each atom has one nearest neighbour (hydrogen: H2; nitrogen: N2; oxygen: O2; fluorine: F2; chlorine: Cl2; bromine: Br2; iodine: I2); and the monatomic noble gases exist as isolated atoms (helium, neon, argon, krypton, xenon, radon) with no fixed nearest neighbour. This gradual reduction in the number of nearest neighbours corresponds (approximately) to a reduction in metallic character. A similar progression is seem among the metals. Metallic bonding tends to involve close-packed centrosymmetric structures with a high number of nearest neighbours. Post-transition metals and metalloids, sandwiched between the true metals and the nonmetals, tend to have more complex structures with an intermediate number of nearest neighbours
Four classes
class="wikitable floatright" style="margin-left: 0.5em;" |
style="border-bottom: none" | Hydrogen
| style="border-bottom: none" | Nonmetal | style="border-bottom: none" | Halogen | style="border-bottom: none" | Noble gas |
style="border-top:none" | H
| style="border-top:none" | C, N, P, O, S, Se | style="border-top:none" | F, Cl, Br, I | style="border-top:none" | He, Ne, Ar, Kr, Xe, Rn |
Field & Gray. Hydrogen is placed by itself on account of it being "so different from all other elements".Field & Gray 2011, p. 12 The remaining nonmetals are divided into nonmetals, halogens, and noble gases, with the unnamed class being distinguished by including nonmetals with relatively strong interatomic bonding, and the metalloids being effectively treated as a third super-class alongside metals and nonmetals.
class="wikitable floatright" style="margin-left: 0.5em;" |
style="border-bottom: none" | Hydrogen
| style="border-bottom: none" | Carbon and other nonmetals | style="border-bottom: none" | Halogen | style="border-bottom: none" | Noble gas |
style="border-top:none" | H
| style="border-top:none" | C, N, P, O, S, Se | style="border-top:none" | F, Cl, Br, I | style="border-top:none" | He, Ne, Ar, Kr, Xe, Rn |
Dinwiddle. A variant of Field & Gray in which carbon, nitrogen, oxygen, phosphorus, sulfur, and selenium are classified as carbon and other nonmetals.Dinwiddle et al. 2018, pp. 34–35
class="wikitable floatright" style="margin-left: 0.5em;" |
style="border-bottom: none; vertical-align: text-top" | Metalloid
| style="border-bottom: none" | Intermediate | style="border-bottom: none" | Corrosive | style="border-bottom: none; vertical-align: text-top" | Noble gas |
style="border-top:none" | B, Si, Ge, As, Sb, Te
| style="border-top:none" | H, C, N, P, S, Se | style="border-top:none" | O, F, Cl, Br, I | style="border-top:none" | He, Ne, Ar, Kr, Xe, Rn |
Vernon. The nonmetals are divided into four classes that complement a four-fold division of the metals, with the noble metals treated as a subset of the transition metals. The metalloids are treated as chemically weak nonmetals, in a manner analogous to their chemically weak frontier metal counterparts.Vernon 2020
Five classes
class="wikitable floatright" style="margin-left: 0.5em;" |
style="border-bottom: none; vertical-align: text-top" | Boroid
| style="border-bottom: none; vertical-align: text-top" | Organogen | style="border-bottom: none" | Sulphuroid | style="border-bottom: none; vertical-align: text-top" | Chloroid | style="border-bottom: none; vertical-align: text-top" | Noble gas |
style="border-top:none" | B, Si
| style="border-top:none" | H, C, N, O | style="border-top:none" | P, S, Se | style="border-top:none" | F, Cl, Br, I | style="border-top:none" | He, Ne, Ar, Kr, Xe, Rn |
Dupasquier. Noble gases were not known in 1844 when this classification arrangement was published. Hydrogen, carbon, nitrogen and oxygen were grouped together on account of their occurrence in living things. Phosphorus, sulfur and selenium were characterised as being solid; volatile at an average temperature between 100 degrees and red heat; and combustible and flammable.Dupasquier 1844, pp. 66–67
class="wikitable floatright" style="margin-left: 0.5em;" |
style="border-bottom: none; vertical-align: text-top" | Hydrogen
| style="border-bottom: none; vertical-align: text-top" | Semiconductor | style="border-bottom: none" | Other nonmetal | style="border-bottom: none; vertical-align: text-top" | Halogen | style="border-bottom: none; vertical-align: text-top" | Noble gas |
style="border-top:none" | H
| style="border-top:none" | B, Si, Ge, As, Sb, Te | style="border-top:none" | C, N, P, O, S, Se | style="border-top:none" | F, Cl, Br, I | style="border-top:none" | He, Ne, Ar, Kr, Xe, Rn |
Myers et al. Metalloids are labeled as semiconductors and carbon, nitrogen, oxygen, phosphorus, sulfur, selenium as other nonmetals.Myers, Oldham & Tocci 2004, pp. 120–121
class="wikitable floatright" style="margin-left: 0.5em;" |
style="border-bottom: none; vertical-align: text-top" | Hydrogen
| style="border-bottom: none; vertical-align: text-top" | Metalloid | style="border-bottom: none" | Nonmetal | style="border-bottom: none; vertical-align: text-top" | Halogen | style="border-bottom: none; vertical-align: text-top" | Noble gas |
style="border-top:none" | H
| style="border-top:none" | B, Si, Ge, As, Sb, Te, Po | style="border-top:none" | C, N, P, O, S, Se | style="border-top:none" | F, Cl, Br, I | style="border-top:none" | He, Ne, Ar, Kr, Xe, Rn |
Dingle. Hydrogen is again placed by itself on account of its uniqueness. The remaining nonmetals are divided into metalloids, nonmetals, (referred to as "quintessential nonmetals"), halogens, and noble gases. Since the metalloids abut the post-transition or "poor" metals, they might be renamed as "poor non-metals".Dingle 2017, pp. 9, 101, 179
Six or seven classes
class="wikitable floatright" style="margin-left: 0.5em;" |
style="border-bottom: none; vertical-align: text-top" | Hydrogen
| style="border-bottom: none; vertical-align: text-top" | Group 13 | style="border-bottom: none; vertical-align: text-top" | Group 14 | style="border-bottom: none; vertical-align: text-top" | Pnictogen | style="border-bottom: none; vertical-align: text-top" | Chalcogen | style="border-bottom: none; vertical-align: text-top" | Halogen | style="border-bottom: none; vertical-align: text-top" | Noble gas |
style="border-top:none" | H
| style="border-top:none" | | style="border-top:none" | C | style="border-top:none" | N, P | style="border-top:none" | O,S,Se | style="border-top:none" | F,Cl,Br,I |He,Ne,Ar,Kr,Xe,Rn |
Generic. After the relevant nonmetals are classified as either noble gases or halogens, the remainder are considered on a group-by-group basis. This results in six or seven sets of nonmetals, depending on the treatment of boron, which in some cases is regarded as a metalloid. The size of the group 14 set, and the sets of nonmetal pnictogens, chalcogens, and halogens will vary depending on how silicon, germanium, arsenic, antimony, selenium, tellurium, and astatine are treated. In some cases, the 2p nonmetals carbon, nitrogen, and oxygen, and other nonmetalsWang et al. 2020 are considered sufficiently different from their heavier congeners to warrant separate treatments.{{#tag:ref|Greenwood and Earnshaw, for example, deal with the chemistry of the nonmetals over thirteen chapters: (i) hydrogen; (ii) boron; (iii) carbon; (iv) silicon; (v) germanium (and tin and lead); (vi) nitrogen; (vii) phosphorus; (viii) arsenic and antimony (and bismuth); (ix) oxygen; (x) sulfur; (xi) selenium and tellurium (and polonium); (xii) the halogens (F, Cl, Br, I, At); and (xiii) the noble gases.Greenwood & Earnshaw 2002|group=n}}
Notes
{{reflist|group=n}}
References
=Citations=
{{Reflist|25em}}
=Bibliography=
- Berkowitz J 2012, The stardust revolution: The new story of our origin in the stars, Prometheus Books, Amherst, New York, {{ISBN|978-1-61614-549-1}}
- Bettelheim FA, Brown WH, Campbell MK, Farrell SO 2010, Introduction to general, organic, and biochemistry, 9th ed., Brooks/Cole, Belmont California, {{ISBN|978-0-495-39112-8}}
- Catling DC 2013, Astrobiology: A very short introduction, Oxford University Press, Oxford, {{ISBN|978-0-19-958645-5}}
- Challoner J 2014, The elements: The new guide to the building blocks of our universe, Carlton Publishing Group, {{ISBN|978-0-233-00436-5}}
- Crawford FH 1968, Introduction to the science of physics, Harcourt, Brace & World, New York
- Cressey 2010, "[http://blogs.nature.com/news/2010/11/chemists_redefine_hydrogen_bon.html Chemists re-define hydrogen bond]", Nature newsblog, accessed 23 August 2017
- Cronyn MW 2003, "The prope
- Dingle A 2017, The elements: An encyclopedic tour of the periodic table, Quad Books, Brighton, {{ISBN|978-0-85762-505-2}}
- Dinwiddle R, Lamb H, Franceschetti DR & Viney M (eds) 2018, How science works, Dorling Kindersley, London
- Dupasquier A 1844, Traité élémentaire de chimie industrielle, Charles Savy Juene, Lyon
- Field SQ & Gray T 2011, Theodore Gray's elements vault, Black Dog & Leventhal Publishers, New York, {{ISBN|978-1-57912-880-7}}
- Gargaud M, Barbier B, Martin H & Reisse J (eds) 2006, Lectures in astrobiology, vol. 1, part 1: The early Earth and other cosmic habitats for life, Springer, Berlin, {{ISBN|3-540-29005-2}}
- Government of Canada 2015, [https://web.archive.org/web/20160305173014/http://science.gc.ca/default.asp?lang=en#46;gc.ca Periodic table of the elements], accessed 30 August 2015
- Ivanenko NB, Ganeev AA, Solovyev ND & Moskvin LN 2011, "Determination of trace elements in biological fluids", Journal of Analytical Chemistry, vol. 66, no. 9, pp. 784–799 (784), {{doi|10.1134/S1061934811090036}}
- Jones BW 2010, Pluto: Sentinel of the Outer Solar System, Cambridge University, Cambridge, {{ISBN|978-0-521-19436-5}}
- Jorgensen CK 2012, Oxidation numbers and oxidation states, Springer-Verlag, Berlin, {{ISBN|978-3-642-87760-5}}
- {{cite book | editor1-last =Jørgensen | editor1-first =SE | editor2-last = Mitsch| editor2-first =WJ | title =Application of ecological modelling in environmental management, part A | year =1983 | publisher =Elsevier Science Publishing | location = | isbn =0-444-42155-6 }}
- Myers RT, Oldham KB & Tocci S 2004, Holt Chemistry, teacher ed., Holt, Rinehart & Winston, Orlando, {{ISBN|0-03-066463-2}}
- Nelson PG 2011, [https://bookboon.com/en/introduction-to-inorganic-chemistry-ebook Introduction to Inorganic Chemistry: Key Ideas and their Experimental Basis], Ventus Publishing ApS
- Rudakiya DM & Patel Y, "Bioremediation of metals, metalloids, and nonmetals", in Panpatte DG & Jhala YK (eds), in Microbial Rejuvenation of Polluted Environment, vol. 2, Springer Nature, Singapore, pp. 33–50, {{ISBN|978-981-15-7455-9}}
- Vernon RE 2020, "Organising the metals and nonmetals," Foundations of Chemistry, pp. 1−17, {{doi|10.1007/s10698-020-09356-6}} (open access)
- Wang et al. 2020, "Understanding the uniqueness of the 2p-elements in the Periodic Table," Chemistry - A European Journal, vol. 26, no. 67, {{doi|10.1002/chem.202003920}}
- {{cite book | last =Wulfsberg | first =G | author-link = | title =Principles of descriptive Inorganic chemistry | year =1987 | publisher =Brooks/Cole Publishing Company | location =Monterey, California | isbn =0-534-07494-4 }}