List of equations in nuclear and particle physics

{{short description|None}}

{{Nuclear physics}}

This article summarizes equations in the theory of nuclear physics and particle physics.

Definitions

class="wikitable"
scope="col" width="200" | Quantity

(common name/s)

! scope="col" width="100" | (Common) symbol/s

! scope="col" width="300" | Defining equation

! scope="col" width="125" | SI units

! scope="col" width="100" | Dimension

Number of atoms

| N = Number of atoms remaining at time t

N0 = Initial number of atoms at time t = 0

ND = Number of atoms decayed at time t

| N_0 = N + N_D \,\!

| dimensionless

| dimensionless

Decay rate, activity of a radioisotope

| A

| A = \lambda N\,\!

| Bq = Hz = s−1

| [T]−1

Decay constant

| λ

| \lambda = A/N \,\!

| Bq = Hz = s−1

| [T]−1

Half-life of a radioisotope

| t1/2, T1/2

| Time taken for half the number of atoms present to decay

t \rightarrow t + T_{1/2} \,\!

N \rightarrow N / 2 \,\!

| s

| [T]

Number of half-lives

| n (no standard symbol)

| n = t / T_{1/2} \,\!

| dimensionless

| dimensionless

Radioisotope time constant, mean lifetime of an atom before decay

| τ (no standard symbol)

| \tau = 1 / \lambda \,\!

| s

| [T]

Absorbed dose, total ionizing dose (total energy of radiation transferred to unit mass)

| D can only be found experimentally

| N/A

| Gy = 1 J/kg (Gray)

| [L]2[T]−2

Equivalent dose

| H

| H = DQ \,\!

Q = radiation quality factor (dimensionless)

| Sv = J kg−1 (Sievert)

| [L]2[T]−2

Effective dose

| E

| E = \sum_j H_jW_j \,\!

Wj = weighting factors corresponding to radiosensitivities of matter (dimensionless)

\sum_j W_j = 1 \,\!

| Sv = J kg−1 (Sievert)

| [L]2[T]−2

Equations

=Nuclear structure=

class="wikitable"
scope="col" width="100" | Physical situation

! scope="col" width="250" | Nomenclature

! scope="col" width="10" | Equations

Mass number

|{{plainlist}}

  • A = (Relative) atomic mass = Mass number = Sum of protons and neutrons
  • N = Number of neutrons
  • Z = Atomic number = Number of protons = Number of electrons

{{endplainlist}}

|A = Z+N\,\!

Mass in nuclei

|{{plainlist}}

  • M'nuc = Mass of nucleus, bound nucleons
  • MΣ = Sum of masses for isolated nucleons
  • mp = proton rest mass
  • mn = neutron rest mass

{{endplainlist}}

|{{plainlist}}

  • M_\Sigma = Zm_p + Nm_n \,\!
  • M_\Sigma > M_N \,\!
  • \Delta M = M_\Sigma - M_\mathrm{nuc} \,\!
  • \Delta E = \Delta M c^2\,\!

{{endplainlist}}

Nuclear radius

|r0 ≈ 1.2 fm

|r=r_0A^{1/3} \,\!

hence (approximately)

{{plainlist}}

  • nuclear volume ∝ A
  • nuclear surface ∝ A2/3

{{endplainlist}}

Nuclear binding energy, empirical curve

|Dimensionless parameters to fit experiment:

{{plainlist}}

  • EB = binding energy,
  • av = nuclear volume coefficient,
  • as = nuclear surface coefficient,
  • ac = electrostatic interaction coefficient,
  • aa = symmetry/asymmetry extent coefficient for the numbers of neutrons/protons,{{endplainlist}}

|\begin{align} E_B = & a_v A - a_s A^{2/3} - a_c Z(Z-1)A^{-1/3} \\

& -a_a (N-Z)^2 A^{-1} + 12\delta(N,Z)A^{-1/2} \\

\end{align}

where (due to pairing of nuclei) {{plainlist}}

  • δ(N, Z) = +1 even N, even Z,
  • δ(N, Z) = −1 odd N, odd Z,
  • δ(N, Z) = 0 odd A

{{endplainlist}}

=Nuclear decay=

class="wikitable"
scope="col" width="100" | Physical situation

! scope="col" width="250" | Nomenclature

! scope="col" width="10" | Equations

Radioactive decay

|{{plainlist}}

  • N0 = Initial number of atoms
  • N = Number of atoms at time t
  • λ = Decay constant
  • t = Time

{{endplainlist}}

|Statistical decay of a radionuclide:

\frac{\mathrm{d} N}{\mathrm{d} t} = - \lambda N

N = N_0e^{-\lambda t}\,\!

Bateman's equations

| c_i = \prod_{j=1, i\neq j}^D \frac{\lambda_j}{\lambda_j - \lambda_i}

| N_D = \frac{N_1(0)}{\lambda_D} \sum_{i=1}^D \lambda_i c_i e^{-\lambda_i t}

Radiation flux

|{{plainlist}}

  • I0 = Initial intensity/Flux of radiation
  • I = Number of atoms at time t
  • μ = Linear absorption coefficient
  • x = Thickness of substance

{{endplainlist}}

|I = I_0e^{-\mu x}\,\!

=Nuclear scattering theory=

The following apply for the nuclear reaction:

:a + bRc

in the centre of mass frame, where a and b are the initial species about to collide, c is the final species, and R is the resonant state.

class="wikitable"
scope="col" width="100" | Physical situation

! scope="col" width="250" | Nomenclature

! scope="col" width="10" | Equations

Breit-Wigner formula

|{{plainlist}}

  • E0 = Resonant energy
  • Γ, Γab, Γc are widths of R, a + b, c respectively
  • k = incoming wavenumber
  • s = spin angular momenta of a and b
  • J = total angular momentum of R

{{endplainlist}}

|Cross-section:

\sigma(E) = \frac{\pi g}{k^2}\frac{\Gamma_{ab}\Gamma_c}{(E-E_0)^2+\Gamma^2/4}

Spin factor:

g = \frac{2J+1}{(2s_a+1)(2s_b+1)}

Total width:

\Gamma = \Gamma_{ab} + \Gamma_c

Resonance lifetime:

\tau = \hbar/\Gamma

Born scattering

|{{plainlist}}

  • r = radial distance
  • μ = Scattering angle
  • A = 2 (spin-0), −1 (spin-half particles)
  • Δk = change in wavevector due to scattering
  • V = total interaction potential
  • V = total interaction potential

{{endplainlist}}

|Differential cross-section:

\frac{d\sigma}{d\Omega} = \left|\frac{2\mu}{\hbar^2}\int_0^\infty\frac{\sin(\Delta kr)}{\Delta kr}V(r)r^2dr\right|^2

Mott scattering

|{{plainlist}}

  • χ = reduced mass of a and b
  • v = incoming velocity

{{endplainlist}}

|Differential cross-section (for identical particles in a coulomb potential, in centre of mass frame):

\frac{d\sigma}{d\Omega}=\left(\frac{\alpha}{4E}\right)\left[\csc^{4}\frac{\chi}{2}+\sec^{4}\frac{\chi}{2}+\frac{A\cos\left(\frac{\alpha}{\hbar\nu}\ln\tan^{2}\frac{\chi}{2}\right)}{\sin^{2}\frac{\chi}{2}\cos\frac{\chi}{2}}\right]^{2}

Scattering potential energy (α = constant):

V = -\alpha/r

Rutherford scattering

|

|Differential cross-section (non-identical particles in a coulomb potential):

\frac{d\sigma}{d\Omega}=\left(\frac{1}{n}\right)\frac{dN}{d\Omega} = \left(\frac{\alpha}{4E}\right)^2 \csc^4\frac{\chi}{2}

=Fundamental forces=

These equations need to be refined such that the notation is defined as has been done for the previous sets of equations.

class="wikitable"
Name

! Equations

Strong force

||

\begin{align}

\mathcal{L}_\mathrm{QCD}

& = \bar{\psi}_i\left(i \gamma^\mu (D_\mu)_{ij} - m\, \delta_{ij}\right) \psi_j - \frac{1}{4}G^a_{\mu \nu} G^{\mu \nu}_a \\

& = \bar{\psi}_i (i \gamma^\mu \partial_\mu - m )\psi_i - g G^a_\mu \bar{\psi}_i \gamma^\mu T^a_{ij} \psi_j - \frac{1}{4}G^a_{\mu \nu} G^{\mu \nu}_a \,,\\

\end{align}

\,\!

Electroweak interaction

||\mathcal{L}_\mathrm{EW} = \mathcal{L}_g + \mathcal{L}_f + \mathcal{L}_h + \mathcal{L}_y.\,\!

:\mathcal{L}_g = -\frac{1}{4}W_a^{\mu\nu}W_{\mu\nu}^a - \frac{1}{4}B^{\mu\nu}B_{\mu\nu}\,\!

:\mathcal{L}_f = \overline{Q}_i iD\!\!\!\!/\; Q_i+ \overline{u}_i^c iD\!\!\!\!/\; u^c_i+ \overline{d}_i^c iD\!\!\!\!/\; d^c_i+ \overline{L}_i iD\!\!\!\!/\; L_i+ \overline{e}^c_i iD\!\!\!\!/\; e^c_i \,\!

:\mathcal{L}_h = |D_\mu h|^2 - \lambda \left(|h|^2 - \frac{v^2}{2}\right)^2\,\!

:\mathcal{L}_y = - y_{u\, ij} \epsilon^{ab} \,h_b^\dagger\, \overline{Q}_{ia} u_j^c - y_{d\, ij}\, h\, \overline{Q}_i d^c_j - y_{e\,ij} \,h\, \overline{L}_i e^c_j + h.c.\,\!

Quantum electrodynamics

||\mathcal{L}_\mathrm{QED}=\bar\psi(i\gamma^\mu D_\mu-m)\psi -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}\;,\,\!

See also

Footnotes

{{Reflist}}

Sources

  • {{cite book| author=B. R. Martin, G.Shaw|title=Particle Physics|date=3 December 2008 |edition=3rd|publisher=Manchester Physics Series, John Wiley & Sons|isbn=978-0-470-03294-7}}
  • {{cite book| author=D. McMahon|title=Quantum Field Theory|publisher=Mc Graw Hill (USA)|year=2008|isbn=978-0-07-154382-8}}
  • {{cite book| author=P.M. Whelan, M.J. Hodgeson| title=Essential Principles of Physics| publisher=John Murray|edition=2nd| year=1978 | isbn=0-7195-3382-1}}
  • {{cite book| author=G. Woan| title=The Cambridge Handbook of Physics Formulas| url=https://archive.org/details/cambridgehandboo0000woan| url-access=registration| publisher=Cambridge University Press| year=2010| isbn=978-0-521-57507-2}}
  • {{cite book| author=A. Halpern| title=3000 Solved Problems in Physics, Schaum Series| publisher=Mc Graw Hill| year=1988| isbn=978-0-07-025734-4}}
  • {{cite book|pages=12–13| author=R.G. Lerner, G.L. Trigg| title=Encyclopaedia of Physics| publisher=VHC Publishers, Hans Warlimont, Springer|edition=2nd| year=2005| isbn=978-0-07-025734-4}}
  • {{cite book| author=C.B. Parker| title=McGraw Hill Encyclopaedia of Physics| publisher=McGraw Hill| edition=2nd| year=1994| isbn=0-07-051400-3| url-access=registration| url=https://archive.org/details/mcgrawhillencycl1993park}}
  • {{cite book| author=P.A. Tipler, G. Mosca| title=Physics for Scientists and Engineers: With Modern Physics| publisher=W.H. Freeman and Co|edition=6th| year=2008| isbn=978-1-4292-0265-7}}
  • {{cite book|title=Dynamics and Relativity|author=J.R. Forshaw, A.G. Smith|publisher=Wiley |year=2009|isbn=978-0-470-01460-8}}

Further reading

  • {{cite book|title=Physics with Modern Applications|author=L.H. Greenberg|publisher=Holt-Saunders International W.B. Saunders and Co|year=1978|isbn=0-7216-4247-0|url-access=registration|url=https://archive.org/details/physicswithmoder0000gree}}
  • {{cite book|title=Principles of Physics|author=J.B. Marion, W.F. Hornyak|publisher=Holt-Saunders International Saunders College|year=1984|isbn=4-8337-0195-2}}
  • {{cite book|title=Concepts of Modern Physics|edition=4th|author=A. Beiser|publisher=McGraw-Hill (International)|year=1987|isbn=0-07-100144-1}}
  • {{cite book|title=University Physics – With Modern Physics|edition=12th|author=H.D. Young, R.A. Freedman|publisher=Addison-Wesley (Pearson International)|year=2008|isbn=978-0-321-50130-1}}

{{SI units navbox}}

Category:Physical quantities

Category:SI units

Nuclear

Category:Nuclear physics

Category:Particle physics