class="wikitable" style="text-align:left" |
style="text-align:left"| Period or supereon
!style="text-align:left"| Extinction
!style="text-align:left"| Date
!style="text-align:left"| Probable causes[{{Cite journal|last1=Bond|first1=David P. G.|last2=Grasby|first2=Stephen E.|date=2017-07-15|title=On the causes of mass extinctions|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|series=Mass Extinction Causality: Records of Anoxia, Acidification, and Global Warming during Earth's Greatest Crises|volume=478|pages=3–29|doi=10.1016/j.palaeo.2016.11.005|bibcode=2017PPP...478....3B|issn=0031-0182|doi-access=free}}] |
---|
rowspan="2" | Quaternary | |Holocene extinction | c. 10,000 BC – Ongoing | Humans[{{cite journal|vauthors=Ripple WJ, Wolf C, Newsome TM, Galetti M, Alamgir M, Crist E, Mahmoud MI, Laurance WF|title=World Scientists' Warning to Humanity: A Second Notice|journal=BioScience|date=13 November 2017|volume=67|issue=12|pages=1026–1028|doi=10.1093/biosci/bix125|quote=Moreover, we have unleashed a mass extinction event, the sixth in roughly 540 million years, wherein many current life forms could be annihilated or at least committed to extinction by the end of this century.|doi-access=free|hdl=11336/71342|hdl-access=free}}] |
Quaternary extinction event | 640,000, 74,000, and 13,000 years ago | Unknown; may include climate changes, massive volcanic eruptions and Humans (largely by human overhunting)[{{cite journal|last1=Sandom|first1=Christopher |last2= Faurby|first2=Søren|last3= Sandel|first3=Brody|last4= Svenning|first4=Jens-Christian|date= 4 June 2014|title=Global late Quaternary megafauna extinctions linked to humans, not climate change |journal=Proceedings of the Royal Society B |volume=281 |issue= 1787|page= 20133254|doi=10.1098/rspb.2013.3254|pmid=24898370 |pmc=4071532 }}][{{cite journal|last1=Vignieri|first1=S.|date=25 July 2014|title=Vanishing fauna (Special issue)|journal=Science|volume=345|issue=6195|pages=392–412|doi=10.1126/science.345.6195.392|pmid=25061199|quote=Although some debate persists, most of the evidence suggests that humans were responsible for extinction of this Pleistocene fauna, and we continue to drive animal extinctions today through the destruction of wild lands, consumption of animals as a resource or a luxury, and persecution of species we see as threats or competitors.|doi-access=free|bibcode=2014Sci...345..392V}}][{{Cite journal|last=Oppenheimer|first=Clive|date=2002-08-01|title=Limited global change due to the largest known Quaternary eruption, Toba ≈74kyr BP?|url=http://www.sciencedirect.com/science/article/pii/S0277379101001548|journal=Quaternary Science Reviews|language=en|volume=21|issue=14|pages=1593–1609|doi=10.1016/S0277-3791(01)00154-8|bibcode=2002QSRv...21.1593O|issn=0277-3791}}] |
rowspan="2" | Neogene | Pliocene#Supernovae| Pliocene–Pleistocene boundary extinction | 2 Ma | Possible causes include a supernova[{{cite journal |last=Benitez |first=Narciso |year=2002 |title=Evidence for Nearby Supernova Explosions |journal=Phys. Rev. Lett. |volume=88 |issue=8 |pages=081101 |doi=10.1103/PhysRevLett.88.081101 |bibcode=2002PhRvL..88h1101B|display-authors=etal |pmid=11863949|arxiv=astro-ph/0201018 |s2cid=41229823 }}][{{cite journal|last1=Fimiani|first1=L.|last2=Cook|first2=D.L.|last3=Faestermann|first3=T.|last4=Gómez-Guzmán|first4=J.M.|last5=Hain|first5=K.|last6=Herzog|first6=G.|last7=Knie|first7=K.|last8=Korschinek|first8=G.|last9=Ludwig|first9=P.|last10=Park|first10=J.|last11=Reedy|first11=R.C.|last12=Rugel|first12=G.|title=Interstellar 60Fe on the Surface of the Moon|journal=Physical Review Letters|date=13 April 2016|volume=116|issue=15|page=151104|doi=10.1103/PhysRevLett.116.151104|pmid=27127953|bibcode=2016PhRvL.116o1104F}}] or the Eltanin impact[{{cite web|url=http://www.bitsofscience.org/pliocene-pleistocene-eltanin-asteroid-ice-ages-6274/|title=Pliocene-Pleistocene boundary: did Eltanin asteroid kickstart the ice ages?|access-date=2019-01-18|archive-url=https://web.archive.org/web/20171003225839/http://www.bitsofscience.org/pliocene-pleistocene-eltanin-asteroid-ice-ages-6274/|archive-date=2017-10-03|url-status=dead}}][{{cite web|url=http://www.universetoday.com/97455/did-a-killer-asteroid-drive-the-planet-into-an-ice-age/|title=Did a Killer Asteroid Drive the Planet Into An Ice Age? |publisher=Universe Today|date=20 September 2012}}] |
Middle Miocene disruption | 14.5 Ma
| Climate change due to change of ocean circulation patterns. Milankovitch cycles may have also contributed[{{Cite journal|last1=Holbourn|first1=Ann|last2=Kuhnt|first2=Wolfgang|last3=Schulz|first3=Michael|last4=Erlenkeuser|first4=Helmut|title=Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion|journal=Nature|volume=438|issue=7067|pages=483–87|doi=10.1038/nature04123|pmid=16306989|year=2005|bibcode=2005Natur.438..483H|s2cid=4406410}}] |
Paleogene | Eocene–Oligocene extinction event | 33.9 Ma | Multiple causes including global cooling, polar glaciation, falling sea levels, and the Popigai impactor[{{cite web|title=Russia's Popigai Meteor Crash Linked to Mass Extinction|website=Live Science|url=http://www.livescience.com/46312-popigai-crater-linked-eocene-mass-extinction.html|date=June 13, 2014}}] |
rowspan="3"|Cretaceous
|style="background:#cff;text-align:left"|Cretaceous–Paleogene extinction event
|66 Ma
|Chicxulub impactor; the volcanism which resulted in the formation of the Deccan Traps may have contributed.[{{cite book|last=Brusatte |first=Steve |author-link=Stephen L. Brusatte |title= The Rise and Fall of the Dinosaurs|pages=328–35|publisher=Picador |location =London |year=2018|isbn=978-1-5098-3009-1}}] |
Cenomanian-Turonian boundary event | 94 Ma | Most likely underwater volcanism associated with the Caribbean large igneous province, which would have caused global warming and acidic oceans[{{cite web|title=Large igneous provinces and mass extinctions: An update|author1=David Bond|author2=Paul Wignall|page=17|url=http://specialpapers.gsapubs.org/content/early/2014/06/10/2014.2505_02.full.pdf|url-status=dead|archive-url=https://web.archive.org/web/20160124174335/http://specialpapers.gsapubs.org/content/early/2014/06/10/2014.2505_02.full.pdf|archive-date=2016-01-24}}] |
Aptian extinction | 117 Ma | Unknown, but may be due to volcanism of the Rajmahal Traps[{{cite journal |last1=Singh |first1=A. P. |last2=Kumar |first2=Niraj |last3=Singh |first3=Bijendra |title=Magmatic underplating beneath the Rajmahal Traps:Gravity signature and derived 3-D configuration.Proc |journal=Indian Acad. Sci. (Earth Planet. Sci |date=2004 |pages=759–769 |doi=10.1007/BF02704035 |citeseerx=10.1.1.501.4945 |s2cid=129952630 }}] |
rowspan="2"| Jurassic
| End-Jurassic (Tithonian) | 145 Ma | No longer regarded as a major extinction but rather a series of lesser events due to bolide impacts, eruptions of flood basalts, climate change and disruptions to oceanic systems[{{Cite journal|last1=Tennant|first1=Jonathan P.|last2=Mannion|first2=Philip D.|last3=Upchurch|first3=Paul|last4=Sutton|first4=Mark D.|last5=Price|first5=Gregory D.|date=2017|title=Biotic and environmental dynamics through the Late Jurassic–Early Cretaceous transition: evidence for protracted faunal and ecological turnover|journal=Biological Reviews|language=en|volume=92|issue=2|pages=776–814|doi=10.1111/brv.12255|pmid=26888552|pmc=6849608|issn=1469-185X|doi-access=free}}] |
Pliensbachian-Toarcian extinction (Toarcian turnover) | 186-178 Ma | Formation of the Karoo-Ferrar Igneous Provinces[{{cite journal |title=Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism |author1=József Pálfy |author2=Paul L. Smith |date=2000 |url=https://www.researchgate.net/publication/238695407 |doi=10.1130/0091-7613(2000)28<747:SBEJEO>2.0.CO;2 |journal=Geology |volume=28 |issue=8 |pages=747–750 |bibcode=2000Geo....28..747P }}] |
rowspan="5" | Triassic
|style="background:#cff;text-align:left"|Triassic–Jurassic extinction event
|201 Ma
|Possible causes include gradual climate changes, volcanism from the Central Atlantic magmatic province[{{cite journal |doi=10.1126/science.1234204|last1= Blackburn |first1=Terrence J.|last2= Olsen |first2= Paul E. |last3= Bowring |first3= Samuel A. |last4= McLean |first4= Noah M.|last5= Kent |first5= Dennis V |last6= Puffer |first6= John |last7= McHone |first7= Greg |last8= Rasbury |first8= Troy |last9= Et-Touhami7|first9= Mohammed |year=2013|title= Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province |journal= Science |volume=340|pages=941–45 |bibcode= 2013Sci...340..941B|issue=6135|pmid=23519213|citeseerx= 10.1.1.1019.4042 |s2cid= 15895416 }}] or an impactor[{{cite journal |last1=Onoue |first1=Tetsuji |last2=Sato |first2=Honami |last3=Yamashita |first3=Daisuke |last4=Ikehara |first4=Minoru |last5=Yasukawa |first5=Kazutaka |last6=Fujinaga |first6=Koichiro |last7=Kato |first7=Yasuhiro |last8=Matsuoka |first8=Atsushi |title=Bolide impact triggered the Late Triassic extinction event in equatorial Panthalassa |journal=Scientific Reports |date=8 July 2016 |volume=6 |issue=29609 |page=29609 |doi=10.1038/srep29609 |pmid=27387863|pmc=4937377 |bibcode=2016NatSR...629609O }}] |
Carnian Pluvial Event | 230 Ma | Wrangellia flood basalts,[{{cite journal | author = Dal Corso, J. |author2=Mietto, P. |author3=Newton, R.J. |author4=Pancost, R.D. |author5=Preto, N. |author6=Roghi, G. |author7=Wignall, P.B. | year = 2012 | title = Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts | journal = Geology | volume = 40 | issue = 1 | pages = 79–82 | doi = 10.1130/g32473.1|bibcode=2012Geo....40...79D }}] or the uplift of the Cimmerian orogeny |
Olenekian-Anisian boundary event
|247 Ma
|Ocean acidification[{{Cite journal |last1=Song |first1=Haijun |last2=Song |first2=Huyue |last3=Tong |first3=Jinnan |last4=Gordon |first4=Gwyneth W. |last5=Wignall |first5=Paul B. |last6=Tian |first6=Li |last7=Zheng |first7=Wang |last8=Algeo |first8=Thomas J. |last9=Liang |first9=Lei |last10=Bai |first10=Ruoyu |last11=Wu |first11=Kui |last12=Anbar |first12=Ariel D. |date=2021-02-20 |title=Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic |url=https://www.sciencedirect.com/science/article/pii/S0009254120305775 |journal=Chemical Geology |language=en |volume=562 |pages=120038 |doi=10.1016/j.chemgeo.2020.120038 |bibcode=2021ChGeo.56220038S |s2cid=233915627 |issn=0009-2541}}] |
Smithian-Spathian boundary event
|249 Ma
|Late eruptions of the Siberian Traps |
Griesbachian-Dienerian boundary-event
|252
|Late eruptions of the Siberian Traps[{{Cite journal |last1=Hochuli |first1=Peter A. |last2=Sanson-Barrera |first2=Anna |last3=Schneebeli-Hermann |first3=Elke |last4=Bucher |first4=Hugo |date=2016-06-24 |title=Severest crisis overlooked—Worst disruption of terrestrial environments postdates the Permian–Triassic mass extinction |journal=Scientific Reports |language=en |volume=6 |issue=1 |pages=28372 |doi=10.1038/srep28372 |pmid=27340926 |pmc=4920029 |bibcode=2016NatSR...628372H |issn=2045-2322}}] |
rowspan="3"|Permian
|style="background:#cff;text-align:left"|Permian–Triassic extinction event
|252 Ma
|Large igneous province (LIP) eruptions [{{Cite journal |last=algeo |first=Thomas |date=2023-09-08 |title=Theory and classification of mass extinction causation |journal=National Science Review |volume=11 |issue=1 |pages=nwad237 |doi=10.1093/nsr/nwad237|pmid=38116094 |pmc=10727847 }}] from the Siberian Traps,[{{cite journal | author = Campbell, I|author2=Czamanske, G. |author3=Fedorenko, V. |author4=Hill, R. |author5=Stepanov, V.]
| year = 1992 | title = Synchronism of the Siberian Traps and the Permian-Triassic Boundary | journal = Science | volume = 258 | issue = 5089 | pages = 1760–63 | doi = 10.1126/science.258.5089.1760 | pmid=17831657|bibcode=1992Sci...258.1760C |s2cid=41194645 }} an impact event (the Wilkes Land Crater),[{{cite journal | author = von Frese, R|author2=Potts, L. |author3=Wells, S. |author4=Leftwich, T. |author5=Kim, H. | year = 2009 | title = GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica | journal = Geochemistry, Geophysics, Geosystems | volume = 10 | issue = 2 |pages=n/a | doi = 10.1029/2008GC002149 | bibcode=2009GGG....10.2014V| doi-access =free }}] an Anoxic event,[{{cite book |last1=Wignall |first1=P |last2=Twitchett |first2=R |chapter=Extent, duration, and nature of the Permian-Triassic superanoxic event |title=Catastrophic events and mass extinctions: impacts and beyond |editor=Christian Koeberl |editor2=Kenneth G. MacLeod |publisher=Geological Society of America |date=2002 |page=396 |doi=10.1130/0-8137-2356-6.395 |isbn=978-0813723563}}] an Ice age,[[https://www.upi.com/Science_News/2017/03/06/Ice-age-not-warming-explains-Permian-Triassic-extinction-event/6871488815458/ Ice age, not warming, explains Permian-Triassic extinction event - UPI.com]] or other possible causes |
End-Capitanian extinction event | 260 Ma | Volcanism from the Emeishan Traps,[{{Cite journal |last1=Bond |first1=David P.G. |last2=Wignall |first2=Paul B. |date=2014-09-01 |title=Large igneous provinces and mass extinctions: An update |url=https://hull-repository.worktribe.com/output/373637/large-igneous-provinces-and-mass-extinctions-an-update |journal=Geological Society of America Special Papers |language=en |volume=505 |pages=29–55 |doi=10.1130/2014.2505(02) |isbn=9780813725055 |issn=0072-1077}}] resulting in global cooling and other effects |
Olson's Extinction
|270 Ma
|Unknown.[{{cite journal |last1=Lucas |first1=S. G. |title=Permian tetrapod extinction events |journal=Earth-Science Reviews |date=1 July 2017 |volume=170 |pages=31–60 |doi=10.1016/j.earscirev.2017.04.008 |bibcode=2017ESRv..170...31L |url=http://dx.doi.org/10.1016/j.earscirev.2017.04.008 |issn=0012-8252}}][{{cite journal |last1=Brocklehurst |first1=Neil |title=An examination of the impact of Olson's extinction on tetrapods from Texas |journal=PeerJ |date=15 May 2018 |volume=6 |pages=e4767 |doi=10.7717/peerj.4767|doi-access=free |pmid=29780669 |pmc=5958880 }}][{{cite journal |last1=Brocklehurst |first1=Neil |title=Olson's Gap or Olson's Extinction? A Bayesian tip-dating approach to resolving stratigraphic uncertainty |journal=Proceedings of the Royal Society B: Biological Sciences |date=10 June 2020 |volume=287 |issue=1928 |pages=20200154 |doi=10.1098/rspb.2020.0154 |pmid=32517621 |pmc=7341920 |url=https://doi.org/10.1098/rspb.2020.0154 |language=en |issn=0962-8452}}] Possibly a change in climate, but evidence for this is weak.[{{cite journal |last1=Laurin |first1=Michel |last2=Hook |first2=Robert W. |title=The age of North America's youngest Paleozoic continental vertebrates: a review of data from the Middle Permian Pease River (Texas) and El Reno (Oklahoma) Groups |journal=BSGF - Earth Sciences Bulletin |date=2022 |volume=193 |pages=10 |doi=10.1051/bsgf/2022007 |url=https://doi.org/10.1051/bsgf/2022007 |language=en}}] This event may actually be a slow decline over 20 Ma.[{{cite journal |last1=Didier |first1=Gilles |last2=Laurin |first2=Michel |title=Testing extinction events and temporal shifts in diversification and fossilization rates through the skyline Fossilized Birth-Death (FBD) model: The example of some mid-Permian synapsid extinctions |journal=Cladistics |date=June 2024 |volume=40 |issue=3 |pages=282–306 |doi=10.1111/cla.12577 |pmid=38651531 |language=en |issn=0748-3007|doi-access=free }}] |
rowspan="2" |Carboniferous | Carboniferous rainforest collapse | 305 Ma | Possibilities include a series of rapid changes in climate, or volcanism of the Skagerrak-Centered Large Igneous Province[{{Cite journal|last1=Doblas|first1=Miguel|last2=R.|first2=OYARZUN|last3=J.|first3=LOPEZ-RUIZ|last4=J.M.|first4=CEBRIA|last5=Youbi|first5=Nasrrddine|last6=V.|first6=MAHECHA|last7=Lago San José|first7=Marceliano|last8=POCOVI|last9=B.|first9=CABANIS|date=1998-12-01|title=Permo-Carboniferous Volcanism in Europe and North Africa: a Superplume exhaust valve in The Center of Pangea.|url=https://www.researchgate.net/publication/262757629|journal=Journal of African Earth Sciences|volume=26|pages=89–99|doi=10.1016/S0899-5362(97)00138-3}}] |
Serpukhovian extinction
|~ 325 Ma
|Onset of the Late Paleozoic icehouse |
rowspan="4" |Devonian
|Hangenberg event
|359 Ma
|Anoxia, possibly related to the Famennian glaciation or volcanic activity, Supernova[{{Cite journal |last1=Fields |first1=Brian D. |last2=Melott |first2=Adrian L. |last3=Ellis |first3=John |last4=Ertel |first4=Adrienne F. |last5=Fry |first5=Brian J. |last6=Lieberman |first6=Bruce S. |last7=Liu |first7=Zhenghai |last8=Miller |first8=Jesse A. |last9=Thomas |first9=Brian C. |date=2020-09-01 |title=Supernova triggers for end-Devonian extinctions |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=117 |issue=35 |pages=21008–21010 |doi=10.1073/pnas.2013774117 |issn=0027-8424 |pmc=7474607 |pmid=32817482|arxiv=2007.01887 |bibcode=2020PNAS..11721008F |doi-access=free }}] |
style="background:#cff;text-align:left" |Late Devonian extinction (Kellwasser event)
|372 Ma
|Viluy Traps[{{cite journal|doi=10.1046/j.0956-540x.2001.01548.x |title=Palaeomagnetism of East Siberian traps and kimberlites: Two new poles and palaeogeographic reconstructions at about 360 and 250 Ma |date=2002 |last1=Kravchinsky |first1=V. A. |last2=Konstantinov |first2=K. M. |last3=Courtillot |first3=V. |last4=Savrasov |first4=J. I. |last5=Valet |first5=J.-P. |last6=Cherniy |first6=S. D. |last7=Mishenin |first7=S. G. |last8=Parasotka |first8=B. S. |journal=Geophysical Journal International |volume=148 |issue=1 |pages=1–33 |bibcode=2002GeoJI.148....1K |url=https://hal-insu.archives-ouvertes.fr/insu-03597800/file/148-1-1.pdf }}][{{cite journal |doi=10.1016/j.gloplacha.2012.01.007 |title=Paleozoic large igneous provinces of Northern Eurasia: Correlation with mass extinction events |date=2012 |last1=Kravchinsky |first1=Vadim A. |journal=Global and Planetary Change |volume=86-87 |pages=31–36 }}][{{Cite journal |title = New 40Ar/39Ar and K–Ar ages of the Viluy traps (Eastern Siberia): Further evidence for a relationship with the Frasnian–Famennian mass extinction |first=J |last=Ricci |display-authors=etal |date = 2013|journal = Palaeogeography, Palaeoclimatology, Palaeoecology|doi = 10.1016/j.palaeo.2013.06.020|volume=386|pages=531–40}}] Woodleigh Impactor? |
Taghanic Event
|~384 Ma
|Anoxia |
Kačák Event
|~388 Ma
|Anoxia |
rowspan="3" |Silurian
| Lau event | 420 Ma | Changes in sea level and chemistry?[{{cite book | author = Jeppsson, L. | year = 1998 | chapter = Silurian oceanic events: summary of general characteristics | title = Silurian Cycles: Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic and Tectonic Changes. James Hall Centennial Volume. New York State Museum Bulletin | volume = 491 |editor=Landing, E. |editor2=Johnson, M.E. | pages = 239–57}}] |
Mulde event | 424 Ma | Global drop in sea level?[{{cite journal | last1 = Jeppsson | first1 = L. | last2 = Calner | first2 = M. | year = 2007 | title = The Silurian Mulde Event and a scenario for secundo – secundo events | journal = Earth and Environmental Science Transactions of the Royal Society of Edinburgh | volume = 93 | issue = 2| pages = 135–54 | doi=10.1017/s0263593300000377| s2cid = 129308139 }}] |
Ireviken event | 428 Ma | Deep-ocean anoxia;[{{cite journal |last1=Munnecke |first1=Axel |last2=Samtleben |first2=Christian |last3=Bickert |first3=Torsten |title=The Ireviken Event in the lower Silurian of Gotland, Sweden - relation to similar Palaeozoic and Proterozoic events |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |date=5 June 2003 |volume=195 |issue=1–2 |page=119 |doi=10.1016/S0031-0182(03)00304-3|bibcode=2003PPP...195...99M }}] Milankovitch cycles?[{{cite book|author=Jeppsson, L|year=1997|chapter=The anatomy of the Mid-Early Silurian Ireviken Event and a scenario for P-S events|editor1=Brett, C.E. |editor2=Baird, G.C. |title=Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications|publisher=Columbia University Press|location=New York|pages=451–92}}] |
Ordovician
| style="background:#cff;text-align:left" |Late Ordovician mass extinction
|445-444 Ma
|Global cooling and sea level drop, and/or global warming related to volcanism and anoxia[{{cite journal |last1=Bond |first1=David P.G. |last2=Grasby |first2=Stephen E. |title=Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation |date=18 May 2020 |journal=Geology |volume=48 |issue=8 |pages=777–781 |doi=10.1130/G47377.1 |bibcode=2020Geo....48..777B |doi-access=free }}] |
rowspan="3" | Cambrian
| Cambrian–Ordovician extinction event | 488 Ma | Kalkarindji Large Igneous Province?[{{Cite journal|last1=Ware|first1=Bryant D.|last2=Jourdan|first2=Fred|last3=Merle|first3=Renaud|last4=Chiaradia|first4=Massimo|last5=Hodges|first5=Kyle|date=2018-04-01|title=The Kalkarindji Large Igneous Province, Australia: Petrogenesis of the Oldest and Most Compositionally Homogenous Province of the Phanerozoic|journal=Journal of Petrology|language=en|volume=59|issue=4|pages=635–665|doi=10.1093/petrology/egy040|bibcode=2018JPet...59..635W|issn=0022-3530|doi-access=free}}] |
Dresbachian extinction event | 502 Ma | |
End-Botomian extinction event | 517 Ma | |
rowspan="2" | Precambrian
| End-Ediacaran extinction | 542 Ma | Anoxic event[{{cite journal | last1=Zhang | first1=Feifei | last2=Xiao | first2=Shuhai | last3=Kendall | first3=Brian | last4=Romaniello | first4=Stephen J. | last5=Cui | first5=Huan | last6=Meyer | first6=Mike | last7=Gilleaudeau | first7=Geoffrey J. | last8=Kaufman | first8=Alan J. | last9=Anbar | first9=Ariel D. | title=Extensive marine anoxia during the terminal Ediacaran Period | journal=Science Advances | publisher=American Association for the Advancement of Science | volume=4 | issue=6 | year=2018 | pages=eaan8983 | issn=2375-2548 | doi=10.1126/sciadv.aan8983 | pmid=29938217 | pmc=6010336 | bibcode=2018SciA....4.8983Z |doi-access=free}}] |
Great Oxygenation Event | 2400 Ma | Rising oxygen levels in the atmosphere due to the development of photosynthesis as well as possible Snowball Earth event. (see: Huronian glaciation.) |