List of implementations of differentially private analyses

{{Short description|none}}

{{redirect-distinguish|Pinq|Pink (disambiguation){{!}}Pink|Pinque (disambiguation){{!}}Pinque}}{{Notability|Lists|date=July 2024}}

Since the advent of differential privacy, a number of systems supporting differentially private data analyses have been implemented and deployed. This article tracks real-world deployments, production software packages, and research prototypes.

Real-world deployments

{{anchor|deployments}}

class="sortable wikitable" style="text-align: left"
Name

! Organization

! Year Introduced

! Notes

! Still in use?

OnTheMap: Interactive tool for exploration of US income and commute patterns.{{Cite web|url=https://onthemap.ces.census.gov/|title=OnTheMap|website=onthemap.ces.census.gov|accessdate=29 March 2023}}{{cite book |last1=Machanavajjhala |first1=Ashwin |last2=Kifer |first2=Daniel |last3=Abowd |first3=John |last4=Gehrke |first4=Johannes |last5=Vilhuber |first5=Lars |title=2008 IEEE 24th International Conference on Data Engineering |chapter=Privacy: Theory meets Practice on the Map |pages=277–286 |date=April 2008 |doi=10.1109/ICDE.2008.4497436|isbn=978-1-4244-1836-7 |s2cid=5812674 }}

| US Census Bureau

| 2008

| First deployment of differential privacy

| Yes

RAPPOR in Chrome Browser to collect security metrics{{cite web |last1=Erlingsson |first1=Úlfar |title=Learning statistics with privacy, aided by the flip of a coin |url=https://security.googleblog.com/2014/10/learning-statistics-with-privacy-aided.html}}{{cite book |last1=Erlingsson |first1=Úlfar |last2=Pihur |first2=Vasyl |last3=Korolova |first3=Aleksandra |title=Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security |chapter=RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response |url=https://archive.org/details/arxiv-1407.6981 |date=November 2014 |pages=1054–1067 |doi=10.1145/2660267.2660348|bibcode=2014arXiv1407.6981E |arxiv=1407.6981 |isbn=9781450329576 |s2cid=6855746 }}

|Google

|2014

|First widespread use of local differential privacy

|No

Emoji analytics; analytics. Improve: QuickType, emoji; Spotlight deep link suggestions; Lookup Hints in Notes. Emoji suggestions, health type usage estimates, Safari energy drain statistics, Autoplay intent detection (also in Safari){{cite journal|last1=Differential Privacy Team |title=Learning with Privacy at Scale |journal=Apple Machine Learning Journal |date=December 2017 |volume=1 |issue=8 |url=https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html}}

| Apple

| 2017

|

| Yes

Application telemetry{{cite journal |last1=Ding |first1=Bolin |last2=Kulkarni |first2=Janardhan |last3=Yekhanin |first3=Sergey |title=Collecting Telemetry Data Privately |journal=31st Conference on Neural Information Processing Systems |date=December 2017 |pages=3574–3583|bibcode=2017arXiv171201524D |arxiv=1712.01524 }}

| Microsoft

| 2017

| Application usage statistics Microsoft Windows.

| yes

Flex: A SQL-based system developed for internal Uber analytics{{cite web |last1=Tezapsidis |first1=Katie |title=Uber Releases Open Source Project for Differential Privacy |url=https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6 |date=Jul 13, 2017}}{{cite journal |last1=Johnson |first1=Noah |last2=Near |first2=Joseph P. |last3=Song |first3=Dawn |title=Towards Practical Differential Privacy for SQL Queries |journal=Proceedings of the VLDB Endowment |date=January 2018 |volume=11 |issue=5 |pages=526–539 |doi=10.1145/3187009.3177733|arxiv=1706.09479 }}

| Uber

| 2017

|

| Unknown

2020 Census{{cite book |last1=Abowd |first1=John M. |title=Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining |chapter=The U.S. Census Bureau Adopts Differential Privacy |date=August 2018 |page=2867 |doi=10.1145/3219819.3226070|isbn=9781450355520 |chapter-url=https://digitalcommons.ilr.cornell.edu/ldi/49 |hdl=1813/60392 |s2cid=51711121 |hdl-access=free }}

|US Census Bureau

| 2018

|

| Yes

Audience Engagement API{{Cite arXiv| eprint=2002.05839 | last1=Rogers | first1=Ryan | last2=Subramaniam | first2=Subbu | last3=Peng | first3=Sean | last4=Durfee | first4=David | last5=Lee | first5=Seunghyun | author6=Santosh Kumar Kancha | last7=Sahay | first7=Shraddha | last8=Ahammad | first8=Parvez | title=LinkedIn's Audience Engagements API: A Privacy Preserving Data Analytics System at Scale | year=2020 | class=cs.CR }}

|LinkedIn

|2020

|

|Yes

Labor Market Insights{{Cite arXiv| eprint=2010.13981 | last1=Rogers | first1=Ryan | author2=Adrian Rivera Cardoso | last3=Mancuhan | first3=Koray | last4=Kaura | first4=Akash | last5=Gahlawat | first5=Nikhil | last6=Jain | first6=Neha | last7=Ko | first7=Paul | last8=Ahammad | first8=Parvez | title=A Members First Approach to Enabling LinkedIn's Labor Market Insights at Scale | year=2020 | class=cs.CR }}

|LinkedIn

|2020

|

|Yes

COVID-19 Community Mobility Reports{{Cite arXiv| eprint=2004.04145 | last1=Aktay | first1=Ahmet | last2=Bavadekar | first2=Shailesh | last3=Cossoul | first3=Gwen | last4=Davis | first4=John | last5=Desfontaines | first5=Damien | last6=Fabrikant | first6=Alex | last7=Gabrilovich | first7=Evgeniy | last8=Gadepalli | first8=Krishna | last9=Gipson | first9=Bryant | last10=Guevara | first10=Miguel | last11=Kamath | first11=Chaitanya | last12=Kansal | first12=Mansi | last13=Lange | first13=Ali | last14=Mandayam | first14=Chinmoy | last15=Oplinger | first15=Andrew | last16=Pluntke | first16=Christopher | last17=Roessler | first17=Thomas | last18=Schlosberg | first18=Arran | last19=Shekel | first19=Tomer | last20=Vispute | first20=Swapnil | last21=Vu | first21=Mia | last22=Wellenius | first22=Gregory | last23=Williams | first23=Brian | author24=Royce J Wilson | title=Google COVID-19 Community Mobility Reports: Anonymization Process Description (Version 1.1) | year=2020 | class=cs.CR }}

|Google

|2020

|

|Unknown

Advertiser Queries{{Cite arXiv|eprint=2002.05839|last1=Rogers|first1=Ryan|last2=Subbu|first2=Subramaniam|first3=Sean|last3=Peng|first4=David|last4=Durfee|first5=Seunghyun|last5=Lee|first6=Santosh Kumar|last6=Kancha|first7=Shraddha|last7=Sahay|first8=Parvez|last8=Ahammad|title=LinkedIn's Audience Engagements API: A Privacy Preserving Data Analytics System at Scale|year=2020|class=cs.CR }}

|LinkedIn

|2020

|

U.S. Broadband Coverage Data Set{{Cite arXiv| eprint=2103.14035 | last1=Pereira | first1=Mayana | last2=Kim | first2=Allen | last3=Allen | first3=Joshua | last4=White | first4=Kevin | author5=Juan Lavista Ferres | last6=Dodhia | first6=Rahul | title=U.S. Broadband Coverage Data Set: A Differentially Private Data Release | year=2021 | class=cs.CR }}

|Microsoft

|2021

|

|Unknown

[https://collegescorecard.ed.gov/ College Scorecard Website]

|IRS and Dept. of Education

|2021

|

|Unknown

Ohm Connect{{Cite web|url=https://edp.recurve.com/|title=EDP|website=EDP|accessdate=29 March 2023}}

|Recurve

|2021

|

|

[https://birth.dataset.pub/ Live Birth Dataset]{{Cite arXiv|eprint= 2405.00267|last1=Hod|first1=Shlomi|last2=Canetti|first2=Ran|title=Differentially Private Release of Israel's National Registry of Live Births|year=2024|class=cs.CR }}{{Cite web|url=https://data.gov.il/dataset/birth-data|title=Live Birth Dataset (Hebrew)|website=data.gov.il|accessdate=2 May 2024}}

|Israeli Ministry of Health

|2024

|

|Yes

Production software packages

These software packages purport to be usable in production systems. They are split in two categories: those focused on answering statistical queries with differential privacy, and those focused on training machine learning models with differential privacy.

= Statistical analyses =

class="sortable wikitable" style="text-align: left"
Name

! Developer

! Year Introduced

! Notes

! Still maintained?

Google's differential privacy libraries{{cite web | url=https://github.com/google/differential-privacy | title=Google's differential privacy libraries | website=GitHub | date=3 February 2023 }}

| Google

| 2019

| Building block libraries in Go, C++, and Java; end-to-end framework in Go,.{{cite web | url=https://github.com/google/differential-privacy/tree/main/privacy-on-beam | title=Differential-privacy/Privacy-on-beam at main · google/Differential-privacy | website=GitHub }}

| Yes

OpenDP{{Cite web|url=https://opendp.org/home|title=OpenDP|website=opendp.org|accessdate=29 March 2023}}

|Harvard, Microsoft

|2020

|Core library in Rust,{{cite web | url=https://github.com/opendp/opendp | title=OpenDP Library | website=GitHub }} SDK in Python with an SQL interface.

|Yes

Tumult Analytics{{Cite web|url=https://www.tmlt.dev/|title=Tumult Analytics|website=www.tmlt.dev|accessdate=29 March 2023}}

| Tumult Labs{{Cite web|url=https://www.tmlt.io/|title=Tumult Labs | Privacy Protection Redefined|website=www.tmlt.io|accessdate=29 March 2023}}

| 2022

| Python library, running on Apache Spark.

| Yes

PipelineDP{{Cite web|url=https://pipelinedp.io/|title=PipelineDP|website=pipelinedp.io|accessdate=29 March 2023}}

| Google, OpenMined{{Cite web|url=https://www.openmined.org/|title=OpenMined|website=www.openmined.org|accessdate=29 March 2023}}

| 2022

| Python library, running on Apache Spark, Apache Beam, or locally.

| Yes

PSI (Ψ): A Private data Sharing Interface

| Harvard University Privacy Tools Project.{{cite web |last1=Gaboardi |first1=Marco |last2=Honaker |first2=James |last3=King |first3=Gary |last4=Nissim |first4=Kobbi |last5=Ullman |first5=Jonathan |last6=Vadhan |first6=Salil |last7=Murtagh |first7=Jack |title=PSI (Ψ): a Private data Sharing Interface |url=https://privacytools.seas.harvard.edu/publications/psipaper |date=June 2016}}

| 2016

|

| No

TopDown Algorithm{{cite web | url=https://github.com/uscensusbureau/DAS_2020_Redistricting_Production_Code | title=DAS 2020 Redistricting Production Code Release | website=GitHub | date=22 June 2022 }}

|United States Census Bureau

|2020

|Production code used in the 2020 US Census.

|No

= Machine learning =

class="sortable wikitable" style="text-align: left"
Name

! Developer

! Year Introduced

! Notes

! Still maintained?

Diffprivlib{{cite web | url=https://github.com/IBM/differential-privacy-library | title=Diffprivlib v0.5 | website=GitHub | date=17 October 2022 }}

|IBM{{Cite arXiv| eprint=1907.02444 | last1=Holohan | first1=Naoise | last2=Braghin | first2=Stefano | author3=Pól Mac Aonghusa | last4=Levacher | first4=Killian | title=Diffprivlib: The IBM Differential Privacy Library | year=2019 | class=cs.CR }}

|2019

|Python library.

|Yes

TensorFlow Privacy{{cite web |last1=Radebaugh |first1=Carey |last2=Erlingsson |first2=Ulfar |title=Introducing TensorFlow Privacy: Learning with Differential Privacy for Training Data |work=Medium |url=https://medium.com/tensorflow/introducing-tensorflow-privacy-learning-with-differential-privacy-for-training-data-b143c5e801b6 |date=March 6, 2019}}{{cite web |title=TensorFlow Privacy |website=GitHub|url=https://github.com/tensorflow/privacy|date=2019-08-09}}

|Google

|2019

|Differentially private training in TensorFlow.

|Yes

Opacus{{Cite web|url=https://opacus.ai/|title=Opacus · Train PyTorch models with Differential Privacy|website=opacus.ai|accessdate=29 March 2023}}

|Meta

|2020

|Differentially private training in PyTorch.

|Yes

Research projects and prototypes

class="sortable wikitable" style="text-align: left"
Name

! Citation

! Year Published

! Notes

PINQ: An API implemented in C#.

| {{cite journal |last1=McSherry |first1=Frank |title=Privacy integrated queries |journal=Communications of the ACM |date=1 September 2010 |volume=53 |issue=9 |pages=89–97 |doi=10.1145/1810891.1810916 |s2cid=52898716 |url=https://www.microsoft.com/en-us/research/wp-content/uploads/2010/08/networking.pdf}}

| 2010

|

Airavat: A MapReduce-based system implemented in Java hardened with SELinux-like access control.

| {{cite journal |last1=Roy |first1=Indrajit |last2=Setty |first2=Srinath T.V. |last3=Kilzer |first3=Ann |last4=Shmatikov |first4=Vitaly |last5=Witchel |first5=Emmett |title=Airavat: Security and Privacy for MapReduce |journal=Proceedings of the 7th Usenix Symposium on Networked Systems Design and Implementation (NSDI) |date=April 2010 |url=https://www.usenix.org/legacy/event/nsdi10/tech/full_papers/roy.pdf}}

| 2010

|

Fuzz: Time-constant implementation in Caml Light of a domain-specific language.

| {{cite journal |last1=Haeberlen |first1=Andreas |last2=Pierce |first2=Benjamin C. |last3=Narayan |first3=Arjun |title=Differential Privacy Under Fire |journal=20th USENIX Security Symposium |date=2011}}

| 2011

|

GUPT: Implementation of the sample-and-aggregate framework.

| {{cite book|last1=Mohan |first1=Prashanth |last2=Thakurta |first2=Abhradeep |last3=Shi |first3=Elaine |author3-link= Elaine Shi |last4=Song |first4=Dawn |last5=Culler |first5=David E. |chapter=GUPT: Privacy Preserving Data Analysis Made Easy |title=Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data |pages=349–360 |doi=10.1145/2213836.2213876|s2cid=2135755 }}

| 2012

|

\epsilonKTELO: A framework and system for answering linear counting queries.

|{{cite book |last1=Zhang |first1=Dan |last2=McKenna |first2=Ryan |last3=Kotsogiannis |first3=Ios |last4=Hay |first4=Michael |last5=Machanavajjhala |first5=Ashwin |last6=Miklau |first6=Gerome |title=Proceedings of the 2018 International Conference on Management of Data |chapter=EKTELO: A Framework for Defining Differentially-Private Computations |date=June 2018 |pages=115–130 |doi=10.1145/3183713.3196921|arxiv=1808.03555 |isbn=9781450347037 |s2cid=5033862 }}

| 2018

|

See also

References