List of proposed quantum registers
{{short description|none}}
A practical quantum computer must use a physical system as a programmable quantum register.{{Cite journal |last1=Tacchino |first1=Francesco |last2=Chiesa |first2=Alessandro |last3=Carretta |first3=Stefano |last4=Gerace |first4=Dario |date=2019-12-19 |title=Quantum Computers as Universal Quantum Simulators: State-of-the-Art and Perspectives |url=https://onlinelibrary.wiley.com/doi/10.1002/qute.201900052 |journal=Advanced Quantum Technologies |language=en |volume=3 |issue=3 |pages=1900052 |doi=10.1002/qute.201900052 |arxiv=1907.03505 |s2cid=195833616 |issn=2511-9044}} Researchers are exploring several technologies as candidates for reliable qubit implementations.{{cite book |doi=10.17226/25196 |title=Quantum Computing: Progress and Prospects |year=2019 |editor-first1=Emily |editor-last1=Grumbling |editor-first2=Mark |editor-last2=Horowitz |author=((National Academies of Sciences, Engineering, and Medicine)) |author-link=National Academies of Sciences, Engineering, and Medicine |isbn=978-0-309-47970-7 |location=Washington, DC |s2cid=125635007 |oclc=1091904777|page=127}}
- Superconducting quantum computing{{cite journal |last1=Clarke |first1=John |last2=Wilhelm |first2=Frank K. |title=Superconducting quantum bits |journal=Nature |date=18 June 2008 |volume=453 |issue=7198 |pages=1031–1042 |doi=10.1038/nature07128 |pmid=18563154 |bibcode=2008Natur.453.1031C |s2cid=125213662 }}{{cite arXiv |last1=Kaminsky |first1=William M. |last2=Lloyd |first2=Seth |last3=Orlando |first3=Terry P. |title=Scalable Superconducting Architecture for Adiabatic Quantum Computation |eprint=quant-ph/0403090 |date=12 March 2004}} {{bibcode|2004quant.ph..3090K}} (qubit implemented by the state of nonlinear resonant superconducting circuits containing Josephson junctions)
- Trapped ion quantum computer (qubit implemented by the internal state of trapped ions)
- Neutral atom quantum computer (qubit implemented by internal states of neutral atoms trapped in an optical lattice or an array of dipole traps, i.e. optical tweezers){{Cite journal |last1=Khazali |first1=Mohammadsadegh |last2=Mølmer |first2=Klaus |date=11 June 2020 |title=Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits |journal=Physical Review X |volume=10 |issue=2 |page=021054 |doi=10.1103/PhysRevX.10.021054 |arxiv=2006.07035 |bibcode=2020PhRvX..10b1054K |doi-access=free}}{{Cite journal |last1=Henriet |first1=Loic |last2=Beguin |first2=Lucas |last3=Signoles |first3=Adrien |last4=Lahaye |first4=Thierry |last5=Browaeys |first5=Antoine |last6=Reymond |first6=Georges-Olivier |last7=Jurczak |first7=Christophe |date=22 June 2020 |title=Quantum computing with neutral atoms |journal=Quantum |volume=4 |page=327 |doi=10.22331/q-2020-09-21-327 |arxiv=2006.12326 |bibcode=2020Quant...4..327H |s2cid=219966169}}{{Cite journal
| title=Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits
| journal=Phys. Rev. Lett.
| volume=89
| pages=097903
| date=August 8, 2002
| url=https://link.aps.org/doi/10.1103/PhysRevLett.89.097903
| doi=10.1103/PhysRevLett.89.097903
| last1=Dumke
| first1=R.
| last2=Volk
| first2=M.
| last3=Müther
| first3=T.
| last4=Buchkremer
| first4=F. B. J
| last5=Birkl
| first5=G.
| last6=Ertmer
| first6=W.
| arxiv=quant-ph/0110140
}}
- Quantum dot computer, spin-based (e.g. the Loss-DiVincenzo quantum computer{{cite journal |last1=Imamog¯lu |first1=A. |last2=Awschalom |first2=D. D. |last3=Burkard |first3=G. |last4=DiVincenzo |first4=D. P. |last5=Loss |first5=D. |last6=Sherwin |first6=M. |last7=Small |first7=A. |title=Quantum Information Processing Using Quantum Dot Spins and Cavity QED |journal=Physical Review Letters |date=15 November 1999 |volume=83 |issue=20 |pages=4204–4207 |doi=10.1103/PhysRevLett.83.4204 |s2cid=18324734 |bibcode=1999PhRvL..83.4204I |arxiv=quant-ph/9904096}}) (qubit given by the spin states of trapped electrons)
- Quantum dot computer, spatial-based (qubit given by electron position in double quantum dot){{cite journal |last1=Fedichkin |first1=L. |last2=Yanchenko |first2=M. |last3=Valiev |first3=K. A. |title=Novel coherent quantum bit using spatial quantization levels in semiconductor quantum dot |journal=Quantum Computers and Computing |date=June 2000 |volume=1 |page=58 |arxiv=quant-ph/0006097 |bibcode=2000quant.ph..6097F}}
- Quantum computing using engineered quantum wells, which could in principle enable the construction of a quantum computer that operates at room temperature{{cite journal |last1=Ivády |first1=Viktor |last2=Davidsson |first2=Joel |last3=Delegan |first3=Nazar |last4=Falk |first4=Abram L. |last5=Klimov |first5=Paul V. |last6=Whiteley |first6=Samuel J. |last7=Hruszkewycz |first7=Stephan O. |last8=Holt |first8=Martin V. |last9=Heremans |first9=F. Joseph |last10=Son |first10=Nguyen Tien |last11=Awschalom |first11=David D. |last12=Abrikosov |first12=Igor A. |last13=Gali |first13=Adam |display-authors=5 |title=Stabilization of point-defect spin qubits by quantum wells |journal=Nature Communications |date=6 December 2019 |volume=10 |issue=1 |page=5607 |doi=10.1038/s41467-019-13495-6 |pmid=31811137 |pmc=6898666 |arxiv=1905.11801 |bibcode=2019NatCo..10.5607I }}{{cite news |title=Scientists Discover New Way to Get Quantum Computing to Work at Room Temperature |url=https://interestingengineering.com/scientists-discover-new-way-to-get-quantum-computing-to-work-at-room-temperature |work=interestingengineering.com |date=24 April 2020 }}
- Coupled quantum wire (qubit implemented by a pair of quantum wires coupled by a quantum point contact){{cite journal |last1=Bertoni |first1=A. |last2=Bordone |first2=P. |last3=Brunetti |first3=R. |last4=Jacoboni |first4=C. |last5=Reggiani |first5=S. |title=Quantum Logic Gates based on Coherent Electron Transport in Quantum Wires |journal=Physical Review Letters |date=19 June 2000 |volume=84 |issue=25 |pages=5912–5915 |doi=10.1103/PhysRevLett.84.5912 |hdl=11380/303796 |hdl-access=free |pmid=10991086 |bibcode=2000PhRvL..84.5912B}}{{cite journal |last1=Ionicioiu |first1=Radu |last2=Amaratunga |first2=Gehan |last3=Udrea |first3=Florin |title=Quantum Computation with Ballistic Electrons |journal=International Journal of Modern Physics B |date=20 January 2001 |volume=15 |issue=2 |pages=125–133 |doi=10.1142/S0217979201003521 |arxiv=quant-ph/0011051 |bibcode=2001IJMPB..15..125I |citeseerx=10.1.1.251.9617 |s2cid=119389613 }}{{cite journal |last1=Ramamoorthy |first1=A |last2=Bird |first2=J. P. |last3=Reno |first3=J. L. |date=11 July 2007 |title=Using split-gate structures to explore the implementation of a coupled-electron-waveguide qubit scheme |journal=Journal of Physics: Condensed Matter |volume=19 |issue=27 |page=276205 |bibcode=2007JPCM...19A6205R |doi=10.1088/0953-8984/19/27/276205 |s2cid=121222743}}
- Nuclear magnetic resonance quantum computer (NMRQC) implemented with the nuclear magnetic resonance of molecules in solution, where qubits are provided by nuclear spins within the dissolved molecule and probed with radio waves
- Solid-state NMR Kane quantum computer (qubit realized by the nuclear spin state of phosphorus donors in silicon)
- Vibrational quantum computer (qubits realized by vibrational superpositions in cold molecules){{cite journal |last1=Berrios |first1=Eduardo |last2=Gruebele |first2=Martin |last3=Shyshlov |first3=Dmytro |last4=Wang |first4=Lei |last5=Babikov |first5=Dmitri |year=2012 |title=High fidelity quantum gates with vibrational qubits |journal=Journal of Chemical Physics |volume=116 |issue=46 |pages=11347–11354 |bibcode=2012JPCA..11611347B |doi=10.1021/jp3055729 |pmid=22803619}}
- Electrons-on-helium quantum computer (qubit is the electron spin)
- Cavity quantum electrodynamics (CQED) (qubit provided by the internal state of trapped atoms coupled to high-finesse cavities)
- Molecular magnet{{cite journal |last1=Leuenberger |first1=Michael N. |last2=Loss |first2=Daniel |title=Quantum computing in molecular magnets |journal=Nature |date=April 2001 |volume=410 |issue=6830 |pages=789–793 |doi=10.1038/35071024 |pmid=11298441 |arxiv=cond-mat/0011415 |bibcode=2001Natur.410..789L |s2cid=4373008 }} (qubit given by spin states)
- Fullerene-based ESR quantum computer (qubit based on the electronic spin of atoms or molecules encased in fullerenes){{cite journal |last1=Harneit |first1=Wolfgang |title=Fullerene-based electron-spin quantum computer |journal= Physical Review A|date=27 February 2002 |volume=65 |issue=3 |page=032322 |doi=10.1103/PhysRevA.65.032322 |bibcode=2002PhRvA..65c2322H |url=https://www.researchgate.net/publication/257976907}}
- Nonlinear optical quantum computer (qubits realized by processing states of different modes of light through both linear and nonlinear elements){{cite conference |first1=K. |last1=Igeta |first2=Y. |last2=Yamamoto |title=Quantum mechanical computers with single atom and photon fields |conference=International Quantum Electronics Conference |year=1988 |url=https://www.osapublishing.org/abstract.cfm?uri=IQEC-1988-TuI4}}{{cite journal |last1=Chuang |first1=I. L. |last2=Yamamoto |first2=Y. |year=1995 |title=Simple quantum computer |journal=Physical Review A |volume=52 |issue=5 |pages=3489–3496 |arxiv=quant-ph/9505011 |bibcode=1995PhRvA..52.3489C |doi=10.1103/PhysRevA.52.3489 |pmid=9912648 |s2cid=30735516}}
- Linear optical quantum computer (LOQC) (qubits realized by processing states of different modes of light through linear elements e.g. mirrors, beam splitters and phase shifters).{{cite journal |last1=Knill |first1=G. J. |last2=Laflamme |last3=Milburn |title=A scheme for efficient quantum computation with linear optics |journal=Nature |year=2001 |volume=409 |doi=10.1038/35051009 |bibcode = 2001Natur.409...46K |first2=R. |first3=G. J. |issue=6816 |pmid=11343107 |pages=46–52 |s2cid=4362012 }} Quantum microprocessor based on laser photonics at room temperature made possible.{{Cite web |date=2023-05-06 |title=Indian scientist among those who made building blocks of quantum computer |url=https://www.deccanherald.com/business/technology/indian-scientist-among-those-who-made-building-blocks-of-quantum-computer-1216384.html |access-date=2023-05-07 |website=Deccan Herald |language=en}}{{Cite web |date=2022-08-07 |title=Traditional hardware can match Google's quantum computer performance: Researchers |url=https://www.deccanherald.com/science-and-environment/traditional-hardware-can-match-googles-quantum-computer-performance-researchers-1134055.html |access-date=2023-05-07 |website=Deccan Herald |language=en}}
- Diamond-based quantum computer{{cite journal
|journal = Optics and Spectroscopy
|date = August 2005
|title = A quantum computer based on NV centers in diamond: Optically detected nutations of single electron and nuclear spins
|author = Nizovtsev, A. P.
|volume = 99 |issue = 2
|pages = 248–260
|doi = 10.1134/1.2034610
|bibcode = 2005OptSp..99..233N |s2cid = 122596827
}}{{cite journal |last1=Dutt |first1=M. V. G. |last2=Childress |first2=L. |last3=Jiang |first3=L. |last4=Togan |first4=E. |last5=Maze |first5=J. |last6=Jelezko |first6=F. |last7=Zibrov |first7=A. S. |last8=Hemmer |first8=P. R. |last9=Lukin |first9=M. D. |display-authors=5 |title=Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond |journal=Science |date=1 June 2007 |volume=316 |issue=5829 |pages=1312–1316 |doi=10.1126/science.1139831 |pmid=17540898 |bibcode=2007Sci...316.....D |s2cid=20697722 }}{{cite web |author=Baron |first=David |date=June 7, 2007 |title=At room temperature, carbon-13 nuclei in diamond create stable, controllable quantum register |url=https://news.harvard.edu/gazette/story/2007/06/single-spinning-nuclei-in-diamond-offer-a-stable-quantum-computing-building-block/ |publisher=The Harvard Gazette, FAS Communications}}{{cite journal
|journal = Science
|date = 6 June 2008
|title = Multipartite Entanglement Among Single Spins in Diamond
|author = Neumann, P.
|volume = 320
|issue = 5881
|pages = 1326–1329
|doi = 10.1126/science.1157233
|pmid = 18535240
|bibcode = 2008Sci...320.1326N
|display-authors = 5
|last2 = Mizuochi
|first2 = N.
|last3 = Rempp
|first3 = F.
|last4 = Hemmer
|first4 = P.
|last5 = Watanabe
|first5 = H.
|last6 = Yamasaki
|first6 = S.
|last7 = Jacques
|first7 = V.
|last8 = Gaebel
|first8 = T.
|last9 = Jelezko
|first9 = F. |s2cid = 8892596
}} (qubit realized by the electronic or nuclear spin of nitrogen-vacancy centers in diamond)
- Bose–Einstein condensate-based quantum computer{{cite journal |last1=Anderlini |first1=Marco |last2=Lee |first2=Patricia J. |last3=Brown |first3=Benjamin L. |last4=Sebby-Strabley |first4=Jennifer |last5=Phillips |first5=William D. |last6=Porto |first6=J. V. |title=Controlled exchange interaction between pairs of neutral atoms in an optical lattice |journal=Nature |date=July 2007 |volume=448 |issue=7152 |pages=452–456 |doi=10.1038/nature06011 |pmid=17653187 |arxiv=0708.2073 |bibcode=2007Natur.448..452A |s2cid=4410355 }}{{cite journal|title=Thousands of Atoms Swap 'Spins' with Partners in Quantum Square Dance|url=https://www.nist.gov/news-events/news/2007/07/thousands-atoms-swap-spins-partners-quantum-square-dance|journal=NIST|date=January 8, 2018}}
- Transistor-based quantum computer (string quantum computers with entrainment of positive holes using an electrostatic trap)
- Rare-earth-metal-ion-doped inorganic crystal based quantum computer{{cite journal
|journal = Opt. Commun.
|date = 1 January 2002
|title = Quantum computer hardware based on rare-earth-ion-doped inorganic crystals
|first1 = N.
|last1 = Ohlsson
|first2 = R. K.
|last2 = Mohan
|first3 = S.
|last3 = Kröll
|volume = 201
|issue = 1–3
|pages = 71–77
|doi = 10.1016/S0030-4018(01)01666-2
|bibcode = 2002OptCo.201...71O }}{{cite journal
|journal = Phys. Rev. Lett.
|date = 23 September 2004
|title = Demonstration of conditional quantum phase shift between ions in a solid
|first1 = J. J.
|last1 = Longdell
|first2 = M. J.
|last2 = Sellars
|first3 = N. B.
|last3 = Manson
|volume = 93
|issue = 13
|page = 130503
|doi = 10.1103/PhysRevLett.93.130503
|pmid = 15524694
|arxiv = quant-ph/0404083 |bibcode = 2004PhRvL..93m0503L |s2cid = 41374015
}} (qubit realized by the internal electronic state of dopants in optical fibers)
- Metallic-like carbon nanospheres-based quantum computer{{cite journal |last1=Náfrádi |first1=Bálint |last2=Choucair |first2=Mohammad |last3=Dinse |first3=Klaus-Peter |last4=Forró |first4=László |title=Room temperature manipulation of long lifetime spins in metallic-like carbon nanospheres |journal=Nature Communications |date=18 July 2016 |volume=7 |issue=1 |page=12232 |doi=10.1038/ncomms12232 |pmid=27426851 |pmc=4960311 |arxiv=1611.07690 |bibcode=2016NatCo...712232N }}
References
{{Reflist|30em}}