List of space groups#List

{{Short description|None}}

There are 230 space groups in three dimensions, given by a number index, and a full name in Hermann–Mauguin notation, and a short name (international short symbol). The long names are given with spaces for readability. The groups each have a point group of the unit cell.

Symbols

In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type. Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group.

These are the Bravais lattices in three dimensions:

  • P primitive
  • I body centered (from the German Innenzentriert)
  • F face centered (from the German Flächenzentriert)
  • A centered on A faces only
  • B centered on B faces only
  • C centered on C faces only
  • R rhombohedral

A reflection plane m within the point groups can be replaced by a glide plane, labeled as a, b, or c depending on which axis the glide is along. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, which is along a quarter of either a face or space diagonal of the unit cell. The d glide is often called the diamond glide plane as it features in the diamond structure.

  • a, b, or c: glide translation along half the lattice vector of this face
  • n: glide translation along half the diagonal of this face
  • d: glide planes with translation along a quarter of a face diagonal
  • e: two glides with the same glide plane and translation along two (different) half-lattice vectors.{{refn|group=note|name=e|The symbol e was introduced by the IUCR in 1992. Prior to this, the space groups Aem2 (No. 39), Aea2 (No. 41), Cmce (No. 64), Cmme (No. 67), and Ccce (No. 68) were known as Abm2 (No. 39), Aba2 (No. 41), Cmca (No. 64), Cmma (No. 67), and Ccca (No. 68) respectively. Historical literature may refer to the old names, but their meaning is unchanged.{{cite journal |last1=de Wolff |first1=P. M. |last2=Billiet |first2=Y. |last3=Donnay |first3=J. D. H. |last4=Fischer |first4=W. |last5=Galiulin |first5=R. B. |last6=Glazer |first6=A. M. |last7=Hahn |first7=T. |last8=Senechal |first8=M. |last9=Shoemaker |first9=D. P. |last10=Wondratschek |first10=H. |last11=Wilson |first11=A. J. C. |last12=Abrahams |first12=S. C. |title=Symbols for symmetry elements and symmetry operations. Final report of the IUCr Ad-Hoc Committee on the Nomenclature of Symmetry |journal=Acta Crystallographica Section A |volume=48 |issue=5 |date=1992-09-01 |issn=0108-7673 |pages=727–732 |doi=10.1107/s0108767392003428 |doi-access=free|bibcode=1992AcCrA..48..727D }}}}

A gyration point can be replaced by a screw axis denoted by a number, n, where the angle of rotation is \color{Black}\tfrac{360^\circ}{n}. The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. For example, 21 is a 180° (twofold) rotation followed by a translation of {{sfrac|1|2}} of the lattice vector. 31 is a 120° (threefold) rotation followed by a translation of {{sfrac|1|3}} of the lattice vector. The possible screw axes are: 21, 31, 32, 41, 42, 43, 61, 62, 63, 64, and 65.

Wherever there is both a rotation or screw axis n and a mirror or glide plane m along the same crystallographic direction, they are represented as a fraction \frac{n}{m} or n/m. For example, 41/a means that the crystallographic axis in question contains both a 41 screw axis as well as a glide plane along a.

In Schoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry elements of the space group, but is instead related to the order in which Schoenflies derived the space groups. This is sometimes supplemented with a symbol of the form \Gamma_x^y which specifies the Bravais lattice. Here x \in \{t, m, o, q, rh, h, c\} is the lattice system, and y \in \{\empty, b, v, f\} is the centering type.{{cite book |last1=Bradley |first1=C. J. |last2=Cracknell |first2=A. P. |title=The mathematical theory of symmetry in solids: representation theory for point groups and space groups |publisher=Clarendon Press |location=Oxford New York |year=2010 |isbn=978-0-19-958258-7 |oclc=859155300 |pages=127–134}}

In Fedorov symbol, the type of space group is denoted as s (symmorphic ), h (hemisymmorphic), or a (asymmorphic). The number is related to the order in which Fedorov derived space groups. There are 73 symmorphic, 54 hemisymmorphic, and 103 asymmorphic space groups.

=Symmorphic=

The 73 symmorphic space groups can be obtained as combination of Bravais lattices with corresponding point group. These groups contain the same symmetry elements as the corresponding point groups. Example for point group 4/mmm (\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m}): the symmorphic space groups are P4/mmm (P\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m}, 36s) and I4/mmm (I\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m}, 37s).

=Hemisymmorphic=

The 54 hemisymmorphic space groups contain only axial combination of symmetry elements from the corresponding point groups. Example for point group 4/mmm (\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m}): hemisymmorphic space groups contain the axial combination 422, but at least one mirror plane m will be substituted with glide plane, for example P4/mcc (P\tfrac{4}{m}\tfrac{2}{c}\tfrac{2}{c}, 35h), P4/nbm (P\tfrac{4}{n}\tfrac{2}{b}\tfrac{2}{m}, 36h), P4/nnc (P\tfrac{4}{n}\tfrac{2}{n}\tfrac{2}{c}, 37h), and I4/mcm (I\tfrac{4}{m}\tfrac{2}{c}\tfrac{2}{m}, 38h).

=Asymmorphic=

The remaining 103 space groups are asymmorphic. Example for point group 4/mmm (\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m}): P4/mbm (P\tfrac{4}{m}\tfrac{2_1}{b}\tfrac{2}{m}, 54a), P42/mmc (P\tfrac{4_2}{m}\tfrac{2}{m}\tfrac{2}{c}, 60a), I41/acd (I\tfrac{4_1}{a}\tfrac{2}{c}\tfrac{2}{d}, 58a) - none of these groups contains the axial combination 422.

List of triclinic

class="wikitable floatright" style="text-align:center;"

|+ Triclinic Bravais lattice

80px

class=wikitable

|+ Triclinic crystal system

! Number

! Point group

! Orbifold

! Short name

! Full name

! Schoenflies

! Fedorov

! Shubnikov

! Fibrifold

align=center

|1

11P1P 1\Gamma_tC_1^11s(a/b/c)\cdot 1(\circ)
align=center

|2

{{overline|1}}\timesP{{overline|1}}P {{overline|1}}\Gamma_tC_i^12s(a/b/c)\cdot \tilde 2(2222)

List of monoclinic

class="wikitable floatright"

|+ Monoclinic Bravais lattice

Simple (P)

! Base (C)

80px

| 80px

class=wikitable

|+ Monoclinic crystal system

!Number

! Point group

! Orbifold

! Short name

! colspan=2|Full name(s)

! Schoenflies

! Fedorov

! Shubnikov

! Fibrifold (primary)

! Fibrifold (secondary)

align=center

|3

rowspan=3|2rowspan=3|22P2P 1 2 1P 1 1 2\Gamma_mC_2^13s(b:(c/a)):2(2_02_02_02_0)({*}_0{*}_0)
align=center

|4

P21P 1 21 1P 1 1 21\Gamma_mC_2^21a(b:(c/a)):2_1(2_12_12_12_1)(\bar{\times}\bar{\times})
align=center

|5

C2C 1 2 1B 1 1 2\Gamma_m^bC_2^34s\left ( \tfrac{a+b}{2}/b:(c/a)\right ) :2(2_02_02_12_1)({*}_1{*}_1), ({*}\bar{\times})
align=center

|6

rowspan=4|mrowspan=4|*PmP 1 m 1P 1 1 m\Gamma_mC_s^15s(b:(c/a))\cdot m[\circ_0]({*}{\cdot}{*}{\cdot})
align=center

|7

PcP 1 c 1P 1 1 b\Gamma_mC_s^21h(b:(c/a))\cdot \tilde c(\bar\circ_0)({*}{:}{*}{:}), ({\times}{\times}_0)
align=center

|8

CmC 1 m 1B 1 1 m\Gamma_m^bC_s^36s\left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot m[\circ_1]({*}{\cdot}{*}{:}), ({*}{\cdot}{\times})
align=center

|9

CcC 1 c 1B 1 1 b\Gamma_m^bC_s^42h\left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot \tilde c(\bar\circ_1)({*}{:}{\times}), ({\times}{\times}_1)
align=center

|10

rowspan=6|2/mrowspan=6|2*P2/mP 1 2/m 1P 1 1 2/m\Gamma_mC_{2h}^17s(b:(c/a))\cdot m:2[2_02_02_02_0][*2{\cdot}22{\cdot}2)
align=center

|11

P21/mP 1 21/m 1P 1 1 21/m\Gamma_mC_{2h}^22a(b:(c/a))\cdot m:2_1[2_12_12_12_1](22{*}{\cdot})
align=center

|12

C2/mC 1 2/m 1B 1 1 2/m\Gamma_m^bC_{2h}^38s\left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot m:2[2_02_02_12_1](*2{\cdot}22{:}2), (2\bar{*}2{\cdot}2)
align=center

|13

P2/cP 1 2/c 1P 1 1 2/b\Gamma_mC_{2h}^43h(b:(c/a))\cdot \tilde c:2(2_02_022)(*2{:}22{:}2), (22{*}_0)
align=center

|14

P21/cP 1 21/c 1P 1 1 21/b\Gamma_mC_{2h}^53a(b:(c/a))\cdot \tilde c:2_1(2_12_122)(22{*}{:}), (22{\times})
align=center

|15

C2/cC 1 2/c 1B 1 1 2/b\Gamma_m^bC_{2h}^64h\left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot \tilde c:2(2_02_122)(2\bar{*}2{:}2), (22{*}_1)

List of orthorhombic

class=wikitable style="text-align:center;"

|+ Orthorhombic Bravais lattice

Simple (P)

! Body (I)

! Face (F)

! Base (A or C)

80px

| 80px

| 80px

| 80px

class=wikitable

|+ Orthorhombic crystal system

!Number

! Point group

! Orbifold

! Short name

! Full name

! Schoenflies

! Fedorov

! Shubnikov

! Fibrifold (primary)

! Fibrifold (secondary)

align=center

|16

rowspan=9|222rowspan=9|222P222P 2 2 2\Gamma_oD_2^19s(c:a:b):2:2(*2_02_02_02_0)
align=center

|17

P2221P 2 2 21\Gamma_oD_2^24a(c:a:b):2_1:2(*2_12_12_12_1)(2_02_0{*})
align=center

|18

P21212P 21 21 2\Gamma_oD_2^37a(c:a:b):2 16px 2_1(2_02_0\bar{\times})(2_12_1{*})
align=center

|19

P212121P 21 21 21\Gamma_oD_2^48a(c:a:b):2_1 16px 2_1(2_12_1\bar{\times})
align=center

|20

C2221C 2 2 21\Gamma_o^bD_2^55a\left ( \tfrac{a+b}{2}:c:a:b\right ) :2_1:2(2_1{*}2_12_1)(2_02_1{*})
align=center

|21

C222C 2 2 2\Gamma_o^bD_2^610s\left ( \tfrac{a+b}{2}:c:a:b\right ) :2:2(2_0{*}2_02_0)(*2_02_02_12_1)
align=center

|22

F222F 2 2 2\Gamma_o^fD_2^712s\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) :2:2(*2_02_12_02_1)
align=center

|23

I222I 2 2 2\Gamma_o^vD_2^811s\left ( \tfrac{a+b+c}{2}/c:a:b\right ) :2:2(2_1{*}2_02_0)
align=center

|24

I212121I 21 21 21\Gamma_o^vD_2^96a\left ( \tfrac{a+b+c}{2}/c:a:b \right ) :2:2_1(2_0{*}2_12_1)
align=center

|25

rowspan=22|mm2rowspan=22|*22Pmm2P m m 2\Gamma_oC_{2v}^113s(c:a:b):m \cdot 2(*{\cdot}2{\cdot}2{\cdot}2{\cdot}2)[{*}_0{\cdot}{*}_0{\cdot}]
align=center

|26

Pmc21P m c 21\Gamma_oC_{2v}^29a(c:a:b): \tilde c \cdot 2_1(*{\cdot}2{:}2{\cdot}2{:}2)(\bar{*}{\cdot}\bar{*}{\cdot}), [{\times_0}{\times_0}]
align=center

|27

Pcc2P c c 2\Gamma_oC_{2v}^35h(c:a:b): \tilde c \cdot 2(*{:}2{:}2{:}2{:}2)(\bar{*}_0\bar{*}_0)
align=center

|28

Pma2P m a 2\Gamma_oC_{2v}^46h(c:a:b): \tilde a \cdot 2(2_02_0{*}{\cdot})[{*}_0{:}{*}_0{:}], (*{\cdot}{*}_0)
align=center

|29

Pca21P c a 21\Gamma_oC_{2v}^511a(c:a:b): \tilde a \cdot 2_1(2_12_1{*}{:})(\bar{*}{:}\bar{*}{:})
align=center

|30

Pnc2P n c 2\Gamma_oC_{2v}^67h(c:a:b): \tilde c \odot 2(2_02_0{*}{:})(\bar{*}_1\bar{*}_1), ({*}_0{\times}_0)
align=center

|31

Pmn21P m n 21\Gamma_oC_{2v}^710a(c:a:b): \widetilde{ac} \cdot 2_1(2_12_1{*}{\cdot})(*{\cdot}\bar{\times}), [{\times}_0{\times}_1]
align=center

|32

Pba2P b a 2\Gamma_oC_{2v}^89h(c:a:b): \tilde a \odot 2(2_02_0{\times}_0)(*{:}{*}_0)
align=center

|33

Pna21P n a 21\Gamma_oC_{2v}^912a(c:a:b): \tilde a \odot 2_1(2_12_1{\times})(*{:}{\times}), ({\times}{\times}_1)
align=center

|34

Pnn2P n n 2\Gamma_oC_{2v}^{10}8h(c:a:b): \widetilde{ac} \odot 2(2_02_0{\times}_1)(*_0{\times}_1)
align=center

|35

Cmm2C m m 2\Gamma_o^bC_{2v}^{11}14s\left ( \tfrac{a+b}{2}:c:a:b\right ) :m \cdot 2(2_0{*}{\cdot}2{\cdot}2)[*_0{\cdot}{*}_0{:}]
align=center

|36

Cmc21C m c 21\Gamma_o^bC_{2v}^{12}13a\left ( \tfrac{a+b}{2}:c:a:b\right ) :\tilde c \cdot 2_1(2_1{*}{\cdot}2{:}2)(\bar{*}{\cdot}\bar{*}{:}), [{\times}_1{\times}_1]
align=center

|37

Ccc2C c c 2\Gamma_o^bC_{2v}^{13}10h\left ( \tfrac{a+b}{2}:c:a:b\right ) : \tilde c \cdot 2(2_0{*}{:}2{:}2)(\bar{*}_0\bar{*}_1)
align=center

|38

Amm2A m m 2\Gamma_o^bC_{2v}^{14}15s\left ( \tfrac{b+c}{2}/c:a:b\right ):m \cdot 2(*{\cdot}2{\cdot}2{\cdot}2{:}2)[{*}_1{\cdot}{*}_1{\cdot}], [*{\cdot}{\times}_0]
align=center

|39

Aem2A b m 2\Gamma_o^bC_{2v}^{15}11h\left ( \tfrac{b+c}{2}/c:a:b\right ) :m \cdot 2_1(*{\cdot}2{:}2{:}2{:}2)[{*}_1{:}{*}_1{:}], (\bar{*}{\cdot}\bar{*}_0)
align=center

|40

Ama2A m a 2\Gamma_o^bC_{2v}^{16}12h\left ( \tfrac{b+c}{2}/c:a:b\right ) : \tilde a \cdot 2(2_02_1{*}{\cdot})(*{\cdot}{*}_1), [*{:}{\times}_1]
align=center

|41

Aea2A b a 2\Gamma_o^bC_{2v}^{17}13h\left ( \tfrac{b+c}{2}/c:a:b\right ) : \tilde a \cdot 2_1(2_02_1{*}{:})(*{:}{*}_1), (\bar{*}{:}\bar{*}_1)
align=center

|42

Fmm2F m m 2\Gamma_o^fC_{2v}^{18}17s\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) :m \cdot 2(*{\cdot}2{\cdot}2{:}2{:}2)[{*}_1{\cdot}{*}_1{:}]
align=center

|43

Fdd2F d d 2\Gamma_o^fC_{2v}^{19}16h\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b \right ) : \tfrac{1}{2} \widetilde{ac} \odot 2(2_02_1{\times})({*}_1{\times})
align=center

|44

Imm2I m m 2\Gamma_o^vC_{2v}^{20}16s\left ( \tfrac{a+b+c}{2}/c:a:b \right ) :m \cdot 2(2_1{*}{\cdot}2{\cdot}2)[*{\cdot}{\times}_1]
align=center

|45

Iba2I b a 2\Gamma_o^vC_{2v}^{21}15h\left ( \tfrac{a+b+c}{2}/c:a:b \right ) : \tilde c \cdot 2(2_1{*}{:}2{:}2)(\bar{*}{:}\bar{*}_0)
align=center

|46

Ima2I m a 2\Gamma_o^vC_{2v}^{22}14h\left ( \tfrac{a+b+c}{2}/c:a:b \right ) : \tilde a \cdot 2(2_0{*}{\cdot}2{:}2)(\bar{*}{\cdot}\bar{*}_1), [*{:}{\times}_0]
align=center

|47

rowspan=28|\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}rowspan=28|*222PmmmP 2/m 2/m 2/m\Gamma_oD_{2h}^118s\left ( c:a:b \right ) \cdot m:2 \cdot m[*{\cdot}2{\cdot}2{\cdot}2{\cdot}2]
align=center

|48

PnnnP 2/n 2/n 2/n\Gamma_oD_{2h}^219h\left ( c:a:b \right ) \cdot \widetilde{ab}:2 \odot \widetilde{ac}(2\bar{*}_12_02_0)
align=center

|49

PccmP 2/c 2/c 2/m\Gamma_oD_{2h}^317h\left ( c:a:b \right ) \cdot m:2 \cdot \tilde c[*{:}2{:}2{:}2{:}2](*2_02_02{\cdot}2)
align=center

|50

PbanP 2/b 2/a 2/n\Gamma_oD_{2h}^418h\left ( c:a:b \right ) \cdot \widetilde{ab}:2 \odot \tilde a(2\bar{*}_02_02_0)(*2_02_02{:}2)
align=center

|51

PmmaP 21/m 2/m 2/a\Gamma_oD_{2h}^514a\left ( c:a:b \right ) \cdot \tilde a :2 \cdot m[2_02_0{*}{\cdot}][*{\cdot}2{:}2{\cdot}2{:}2], [*2{\cdot}2{\cdot}2{\cdot}2]
align=center

|52

PnnaP 2/n 21/n 2/a\Gamma_oD_{2h}^617a\left ( c:a:b \right ) \cdot \tilde a:2 \odot \widetilde{ac}(2_02\bar{*}_1)(2_0{*}2{:}2), (2\bar{*}2_12_1)
align=center

|53

PmnaP 2/m 2/n 21/a\Gamma_oD_{2h}^715a\left ( c:a:b \right ) \cdot \tilde a:2_1 \cdot \widetilde{ac}[2_02_0{*}{:}](*2_12_12{\cdot}2), (2_0{*}2{\cdot}2)
align=center

|54

PccaP 21/c 2/c 2/a\Gamma_oD_{2h}^816a\left ( c:a:b \right ) \cdot \tilde a:2 \cdot \tilde c(2_02\bar{*}_0)(*2{:}2{:}2{:}2), (*2_12_12{:}2)
align=center

|55

PbamP 21/b 21/a 2/m\Gamma_oD_{2h}^922a\left ( c:a:b \right ) \cdot m:2 \odot \tilde a[2_02_0{\times}_0](*2{\cdot}2{:}2{\cdot}2)
align=center

|56

PccnP 21/c 21/c 2/n\Gamma_oD_{2h}^{10}27a\left ( c:a:b \right ) \cdot \widetilde{ab}:2 \cdot \tilde c(2\bar{*}{:}2{:}2)(2_12\bar{*}_0)
align=center

|57

PbcmP 2/b 21/c 21/m\Gamma_oD_{2h}^{11}23a\left ( c:a:b \right ) \cdot m:2_1 \odot \tilde c(2_02\bar{*}{\cdot})(*2{:}2{\cdot}2{:}2), [2_12_1{*}{:}]
align=center

|58

PnnmP 21/n 21/n 2/m\Gamma_oD_{2h}^{12}25a\left ( c:a:b \right ) \cdot m:2 \odot \widetilde{ac}[2_02_0{\times}_1](2_1{*}2{\cdot}2)
align=center

|59

PmmnP 21/m 21/m 2/n\Gamma_oD_{2h}^{13}24a\left ( c:a:b \right ) \cdot \widetilde{ab}:2 \cdot m(2\bar{*}{\cdot}2{\cdot}2)[2_12_1{*}{\cdot}]
align=center

|60

PbcnP 21/b 2/c 21/n\Gamma_oD_{2h}^{14}26a\left ( c:a:b \right ) \cdot \widetilde{ab}:2_1 \odot \tilde c(2_02\bar{*}{:})(2_1{*}2{:}2), (2_12\bar{*}_1)
align=center

|61

PbcaP 21/b 21/c 21/a\Gamma_oD_{2h}^{15}29a\left ( c:a:b \right ) \cdot \tilde a:2_1 \odot \tilde c(2_12\bar{*}{:})
align=center

|62

PnmaP 21/n 21/m 21/a\Gamma_oD_{2h}^{16}28a\left ( c:a:b \right ) \cdot \tilde a:2_1 \odot m(2_12\bar{*}{\cdot})(2\bar{*}{\cdot}2{:}2), [2_12_1{\times}]
align=center

|63

CmcmC 2/m 2/c 21/m\Gamma_o^bD_{2h}^{17}18a\left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot m:2_1 \cdot \tilde c[2_02_1{*}{\cdot}](*2{\cdot}2{\cdot}2{:}2), [2_1{*}{\cdot}2{:}2]
align=center

|64

CmceC 2/m 2/c 21/a\Gamma_o^bD_{2h}^{18}19a\left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot \tilde a :2_1 \cdot \tilde c[2_02_1{*}{:}](*2{\cdot}2{:}2{:}2), (*2_12{\cdot}2{:}2)
align=center

|65

CmmmC 2/m 2/m 2/m\Gamma_o^bD_{2h}^{19}19s\left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot m:2 \cdot m[2_0{*}{\cdot}2{\cdot}2][*{\cdot}2{\cdot}2{\cdot}2{:}2]
align=center

|66

CccmC 2/c 2/c 2/m\Gamma_o^bD_{2h}^{20}20h\left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot m:2 \cdot \tilde c[2_0{*}{:}2{:}2](*2_02_12{\cdot}2)
align=center

|67

CmmeC 2/m 2/m 2/e\Gamma_o^bD_{2h}^{21}21h\left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot \tilde a :2 \cdot m(*2_02{\cdot}2{\cdot}2)[*{\cdot}2{:}2{:}2{:}2]
align=center

|68

CcceC 2/c 2/c 2/e\Gamma_o^bD_{2h}^{22}22h\left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot \tilde a :2 \cdot \tilde c(*2_02{:}2{:}2)(*2_02_12{:}2)
align=center

|69

FmmmF 2/m 2/m 2/m\Gamma_o^fD_{2h}^{23}21s\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) \cdot m:2 \cdot m[*{\cdot}2{\cdot}2{:}2{:}2]
align=center

|70

FdddF 2/d 2/d 2/d\Gamma_o^fD_{2h}^{24}24h\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) \cdot \tfrac{1}{2}\widetilde{ab}:2 \odot \tfrac{1}{2}\widetilde{ac}(2\bar{*}2_02_1)
align=center

|71

ImmmI 2/m 2/m 2/m\Gamma_o^vD_{2h}^{25}20s\left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot m:2 \cdot m[2_1{*}{\cdot}2{\cdot}2]
align=center

|72

IbamI 2/b 2/a 2/m\Gamma_o^vD_{2h}^{26}23h\left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot m:2 \cdot \tilde c[2_1{*}{:}2{:}2](*2_02{\cdot}2{:}2)
align=center

|73

IbcaI 2/b 2/c 2/a\Gamma_o^vD_{2h}^{27}21a\left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot \tilde a :2 \cdot \tilde c(*2_12{:}2{:}2)
align=center

|74

ImmaI 2/m 2/m 2/a\Gamma_o^vD_{2h}^{28}20a\left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot \tilde a :2 \cdot m(*2_12{\cdot}2{\cdot}2)[2_0{*}{\cdot}2{:}2]

List of tetragonal

class="wikitable floatright"

|+ Tetragonal Bravais lattice

Simple (P)

! Body (I)

80px

| 80px

class=wikitable

|+ Tetragonal crystal system

!Number

! Point group

! Orbifold

! Short name

! Full name

! Schoenflies

! Fedorov

! Shubnikov

! Fibrifold

align=center

|75

rowspan=6|4rowspan=6|44P4P 4\Gamma_qC_4^122s(c:a:a):4(4_04_02_0)
align=center

|76

P41P 41\Gamma_qC_4^230a(c:a:a) :4_1(4_14_12_1)
align=center

|77

P42P 42\Gamma_qC_4^333a(c:a:a) :4_2(4_24_22_0)
align=center

|78

P43P 43\Gamma_qC_4^431a(c:a:a) :4_3(4_14_12_1)
align=center

|79

I4I 4\Gamma_q^vC_4^523s\left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4(4_24_02_1)
align=center

|80

I41I 41\Gamma_q^vC_4^632a\left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4_1(4_34_12_0)
align=center

|81

rowspan=2|{{overline|4}}rowspan=2|2\timesP{{overline|4}}P {{overline|4}}\Gamma_qS_4^126s(c:a:a):\tilde 4(442_0)
align=center

|82

I{{overline|4}}I {{overline|4}}\Gamma_q^vS_4^227s\left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4(442_1)
align=center

|83

rowspan=6|4/mrowspan=6|4*P4/mP 4/m\Gamma_qC_{4h}^128s(c:a:a)\cdot m:4[4_04_02_0]
align=center

|84

P42/mP 42/m\Gamma_qC_{4h}^241a(c:a:a)\cdot m:4_2[4_24_22_0]
align=center

|85

P4/nP 4/n\Gamma_qC_{4h}^329h(c:a:a)\cdot \widetilde{ab}:4(44_02)
align=center

|86

P42/nP 42/n\Gamma_qC_{4h}^442a(c:a:a)\cdot \widetilde{ab}:4_2(44_22)
align=center

|87

I4/mI 4/m\Gamma_q^vC_{4h}^529s\left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot m:4[4_24_02_1]
align=center

|88

I41/aI 41/a\Gamma_q^vC_{4h}^640a\left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot \tilde a :4_1(44_12)
align=center

|89

rowspan=10|422rowspan=10|224P422P 4 2 2\Gamma_qD_4^130s(c:a:a):4:2(*4_04_02_0)
align=center

|90

P4212P4212\Gamma_qD_4^243a(c:a:a):4 16px 2_1(4_0{*}2_0)
align=center

|91

P4122P 41 2 2\Gamma_qD_4^344a(c:a:a):4_1:2(*4_14_12_1)
align=center

|92

P41212P 41 21 2\Gamma_qD_4^448a(c:a:a):4_1 16px 2_1(4_1{*}2_1)
align=center

|93

P4222P 42 2 2\Gamma_qD_4^547a(c:a:a):4_2:2(*4_24_22_0)
align=center

|94

P42212P 42 21 2\Gamma_qD_4^650a(c:a:a):4_2 16px 2_1(4_2{*}2_0)
align=center

|95

P4322P 43 2 2\Gamma_qD_4^745a(c:a:a):4_3:2(*4_14_12_1)
align=center

|96

P43212P 43 21 2\Gamma_qD_4^849a(c:a:a):4_3 16px 2_1(4_1{*}2_1)
align=center

|97

I422I 4 2 2\Gamma_q^vD_4^931s\left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4:2(*4_24_02_1)
align=center

|98

I4122I 41 2 2\Gamma_q^vD_4^{10}46a\left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4:2_1(*4_34_12_0)
align=center

|99

rowspan=12|4mmrowspan=12|*44P4mmP 4 m m\Gamma_qC_{4v}^124s(c:a:a):4\cdot m(*{\cdot}4{\cdot}4{\cdot}2)
align=center

|100

P4bmP 4 b m\Gamma_qC_{4v}^226h(c:a:a):4\odot \tilde a(4_0{*}{\cdot}2)
align=center

|101

P42cmP 42 c m\Gamma_qC_{4v}^337a(c:a:a):4_2\cdot \tilde c(*{:}4{\cdot}4{:}2)
align=center

|102

P42nmP 42 n m\Gamma_qC_{4v}^438a(c:a:a):4_2\odot \widetilde{ac}(4_2{*}{\cdot}2)
align=center

|103

P4ccP 4 c c\Gamma_qC_{4v}^525h(c:a:a):4\cdot \tilde c(*{:}4{:}4{:}2)
align=center

|104

P4ncP 4 n c\Gamma_qC_{4v}^627h(c:a:a):4\odot \widetilde{ac}(4_0{*}{:}2)
align=center

|105

P42mcP 42 m c\Gamma_qC_{4v}^736a(c:a:a):4_2\cdot m(*{\cdot}4{:}4{\cdot}2)
align=center

|106

P42bcP 42 b c\Gamma_qC_{4v}^839a(c:a:a):4\odot \tilde a(4_2{*}{:}2)
align=center

|107

I4mmI 4 m m\Gamma_q^vC_{4v}^925s\left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4\cdot m(*{\cdot}4{\cdot}4{:}2)
align=center

|108

I4cmI 4 c m\Gamma_q^vC_{4v}^{10}28h\left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4\cdot \tilde c(*{\cdot}4{:}4{:}2)
align=center

|109

I41mdI 41 m d\Gamma_q^vC_{4v}^{11}34a\left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4_1\odot m(4_1{*}{\cdot}2)
align=center

|110

I41cdI 41 c d\Gamma_q^vC_{4v}^{12}35a\left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4_1\odot \tilde c(4_1{*}{:}2)
align=center

|111

rowspan=12|{{overline|4}}2mrowspan=12|2{*}2P{{overline|4}}2mP {{overline|4}} 2 m\Gamma_qD_{2d}^132s(c:a:a):\tilde 4 :2(*4{\cdot}42_0)
align=center

|112

P{{overline|4}}2cP {{overline|4}} 2 c\Gamma_qD_{2d}^230h(c:a:a):\tilde 4 16px 2(*4{:}42_0)
align=center

|113

P{{overline|4}}21mP {{overline|4}} 21 m\Gamma_qD_{2d}^352a(c:a:a):\tilde 4 \cdot \widetilde{ab}(4\bar{*}{\cdot}2)
align=center

|114

P{{overline|4}}21cP {{overline|4}} 21 c\Gamma_qD_{2d}^453a(c:a:a):\tilde 4 \cdot \widetilde{abc}(4\bar{*}{:}2)
align=center

|115

P{{overline|4}}m2P {{overline|4}} m 2\Gamma_qD_{2d}^533s(c:a:a):\tilde 4 \cdot m(*{\cdot}44{\cdot}2)
align=center

|116

P{{overline|4}}c2P {{overline|4}} c 2\Gamma_qD_{2d}^631h(c:a:a):\tilde 4 \cdot \tilde c(*{:}44{:}2)
align=center

|117

P{{overline|4}}b2P {{overline|4}} b 2\Gamma_qD_{2d}^732h(c:a:a):\tilde 4 \odot \tilde a(4\bar{*}_02_0)
align=center

|118

P{{overline|4}}n2P {{overline|4}} n 2\Gamma_qD_{2d}^833h(c:a:a):\tilde 4 \cdot \widetilde{ac}(4\bar{*}_12_0)
align=center

|119

I{{overline|4}}m2I {{overline|4}} m 2\Gamma_q^vD_{2d}^935s\left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 \cdot m(*4{\cdot}42_1)
align=center

|120

I{{overline|4}}c2I {{overline|4}} c 2\Gamma_q^vD_{2d}^{10}34h\left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 \cdot \tilde c(*4{:}42_1)
align=center

|121

I{{overline|4}}2mI {{overline|4}} 2 m\Gamma_q^vD_{2d}^{11}34s\left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 :2(*{\cdot}44{:}2)
align=center

|122

I{{overline|4}}2dI {{overline|4}} 2 d\Gamma_q^vD_{2d}^{12}51a\left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 \odot \tfrac{1}{2}\widetilde{abc}(4\bar{*}2_1)
align=center

|123

rowspan=20|4/m 2/m 2/mrowspan=20|*224P4/mmmP 4/m 2/m 2/m\Gamma_qD_{4h}^136s(c:a:a)\cdot m:4\cdot m[*{\cdot}4{\cdot}4{\cdot}2]
align=center

|124

P4/mccP 4/m 2/c 2/c\Gamma_qD_{4h}^235h(c:a:a)\cdot m:4\cdot \tilde c[*{:}4{:}4{:}2]
align=center

|125

P4/nbmP 4/n 2/b 2/m\Gamma_qD_{4h}^336h(c:a:a)\cdot \widetilde{ab}:4\odot \tilde a(*4_04{\cdot}2)
align=center

|126

P4/nncP 4/n 2/n 2/c\Gamma_qD_{4h}^437h(c:a:a)\cdot \widetilde{ab}:4\odot \widetilde{ac}(*4_04{:}2)
align=center

|127

P4/mbmP 4/m 21/b 2/m\Gamma_qD_{4h}^554a(c:a:a)\cdot m:4\odot \tilde a[4_0{*}{\cdot}2]
align=center

|128

P4/mncP 4/m 21/n 2/c\Gamma_qD_{4h}^656a(c:a:a)\cdot m:4\odot \widetilde{ac}[4_0{*}{:}2]
align=center

|129

P4/nmmP 4/n 21/m 2/m\Gamma_qD_{4h}^755a(c:a:a)\cdot \widetilde{ab}:4\cdot m(*4{\cdot}4{\cdot}2)
align=center

|130

P4/nccP 4/n 21/c 2/c\Gamma_qD_{4h}^857a(c:a:a)\cdot \widetilde{ab}:4\cdot \tilde c(*4{:}4{:}2)
align=center

|131

P42/mmcP 42/m 2/m 2/c\Gamma_qD_{4h}^960a(c:a:a)\cdot m:4_2\cdot m[*{\cdot}4{:}4{\cdot}2]
align=center

|132

P42/mcmP 42/m 2/c 2/m\Gamma_qD_{4h}^{10}61a(c:a:a)\cdot m:4_2\cdot \tilde c[*{:}4{\cdot}4{:}2]
align=center

|133

P42/nbcP 42/n 2/b 2/c\Gamma_qD_{4h}^{11}63a(c:a:a)\cdot \widetilde{ab}:4_2\odot \tilde a(*4_24{:}2)
align=center

|134

P42/nnmP 42/n 2/n 2/m\Gamma_qD_{4h}^{12}62a(c:a:a)\cdot \widetilde{ab}:4_2\odot \widetilde{ac}(*4_24{\cdot}2)
align=center

|135

P42/mbcP 42/m 21/b 2/c\Gamma_qD_{4h}^{13}66a(c:a:a)\cdot m:4_2\odot \tilde a[4_2{*}{:}2]
align=center

|136

P42/mnmP 42/m 21/n 2/m\Gamma_qD_{4h}^{14}65a(c:a:a)\cdot m:4_2\odot \widetilde{ac}[4_2{*}{\cdot}2]
align=center

|137

P42/nmcP 42/n 21/m 2/c\Gamma_qD_{4h}^{15}67a(c:a:a)\cdot \widetilde{ab}:4_2\cdot m(*4{\cdot}4{:}2)
align=center

|138

P42/ncmP 42/n 21/c 2/m\Gamma_qD_{4h}^{16}65a(c:a:a)\cdot \widetilde{ab}:4_2\cdot \tilde c(*4{:}4{\cdot}2)
align=center

|139

I4/mmmI 4/m 2/m 2/m\Gamma_q^vD_{4h}^{17}37s\left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot m:4\cdot m[*{\cdot}4{\cdot}4{:}2]
align=center

|140

I4/mcmI 4/m 2/c 2/m\Gamma_q^vD_{4h}^{18}38h\left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot m:4\cdot \tilde c[*{\cdot}4{:}4{:}2]
align=center

|141

I41/amdI 41/a 2/m 2/d\Gamma_q^vD_{4h}^{19}59a\left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot \tilde a :4_1\odot m(*4_14{\cdot}2)
align=center

|142

I41/acdI 41/a 2/c 2/d\Gamma_q^vD_{4h}^{20}58a\left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot \tilde a :4_1\odot \tilde c(*4_14{:}2)

List of trigonal

class="wikitable floatright"

|+ Trigonal Bravais lattice

Rhombohedral (R)

! Hexagonal (P)

style="vertical-align:top;"

| 100px

| 100px

class=wikitable

|+ Trigonal crystal system

!Number

! Point group

! Orbifold

! Short name

! Full name

! Schoenflies

! Fedorov

! Shubnikov

! Fibrifold

align=center

|143

rowspan=4|3rowspan=4|33P3P 3\Gamma_hC_3^138s(c:(a/a)):3(3_03_03_0)
align=center

|144

P31P 31\Gamma_hC_3^268a(c:(a/a)):3_1(3_13_13_1)
align=center

|145

P32P 32\Gamma_hC_3^369a(c:(a/a)):3_2(3_13_13_1)
align=center

|146

R3R 3\Gamma_{rh}C_3^439s(a/a/a)/3(3_03_13_2)
align=center

|147

rowspan=2|{{overline|3}}rowspan=2|3\timesP{{overline|3}}P {{overline|3}}\Gamma_hC_{3i}^151s(c:(a/a)):\tilde 6(63_02)
align=center

|148

R{{overline|3}}R {{overline|3}}\Gamma_{rh}C_{3i}^252s(a/a/a)/\tilde 6(63_12)
align=center

|149

rowspan=7|32rowspan=7|223P312P 3 1 2\Gamma_hD_3^145s(c:(a/a)):2:3(*3_03_03_0)
align=center

|150

P321P 3 2 1\Gamma_hD_3^244s(c:(a/a))\cdot 2:3(3_0{*}3_0)
align=center

|151

P3112P 31 1 2\Gamma_hD_3^372a(c:(a/a)):2:3_1(*3_13_13_1)
align=center

|152

P3121P 31 2 1\Gamma_hD_3^470a(c:(a/a))\cdot 2:3_1(3_1{*}3_1)
align=center

|153

P3212P 32 1 2\Gamma_hD_3^573a(c:(a/a)):2:3_2(*3_13_13_1)
align=center

|154

P3221P 32 2 1\Gamma_hD_3^671a(c:(a/a))\cdot 2:3_2(3_1{*}3_1)
align=center

|155

R32R 3 2\Gamma_{rh}D_3^746s(a/a/a)/3:2(*3_03_13_2)
align=center

|156

rowspan=6|3mrowspan=6|*33P3m1P 3 m 1\Gamma_hC_{3v}^140s(c:(a/a)):m\cdot 3(*{\cdot}3{\cdot}3{\cdot}3)
align=center

|157

P31mP 3 1 m\Gamma_hC_{3v}^241s(c:(a/a))\cdot m\cdot 3(3_0{*}{\cdot}3)
align=center

|158

P3c1P 3 c 1\Gamma_hC_{3v}^339h(c:(a/a)):\tilde c:3(*{:}3{:}3{:}3)
align=center

|159

P31cP 3 1 c\Gamma_hC_{3v}^440h(c:(a/a))\cdot\tilde c :3(3_0{*}{:}3)
align=center

|160

R3mR 3 m\Gamma_{rh}C_{3v}^542s(a/a/a)/3\cdot m(3_1{*}{\cdot}3)
align=center

|161

R3cR 3 c\Gamma_{rh}C_{3v}^641h(a/a/a)/3\cdot\tilde c(3_1{*}{:}3)
align=center

|162

rowspan=6|{{overline|3}} 2/mrowspan=6|2{*}3P{{overline|3}}1mP {{overline|3}} 1 2/m\Gamma_hD_{3d}^156s(c:(a/a))\cdot m\cdot\tilde 6(*{\cdot}63_02)
align=center

|163

P{{overline|3}}1cP {{overline|3}} 1 2/c\Gamma_hD_{3d}^246h(c:(a/a))\cdot\tilde c \cdot\tilde 6(*{:}63_02)
align=center

|164

P{{overline|3}}m1P {{overline|3}} 2/m 1\Gamma_hD_{3d}^355s(c:(a/a)):m\cdot\tilde 6(*6{\cdot}3{\cdot}2)
align=center

|165

P{{overline|3}}c1P {{overline|3}} 2/c 1\Gamma_hD_{3d}^445h(c:(a/a)):\tilde c \cdot\tilde 6(*6{:}3{:}2)
align=center

|166

R{{overline|3}}mR {{overline|3}} 2/m\Gamma_{rh}D_{3d}^557s(a/a/a)/\tilde 6 \cdot m(*{\cdot}63_12)
align=center

|167

R{{overline|3}}cR {{overline|3}} 2/c\Gamma_{rh}D_{3d}^647h(a/a/a)/\tilde 6 \cdot\tilde c(*{:}63_12)

List of hexagonal

class="wikitable floatright"

|+ Hexagonal Bravais lattice

80px

class=wikitable

|+ Hexagonal crystal system

!Number

! Point group

! Orbifold

! Short name

! Full name

! Schoenflies

! Fedorov

! Shubnikov

! Fibrifold

align=center

|168

rowspan=6|6rowspan=6|66P6P 6\Gamma_hC_6^149s(c:(a/a)):6(6_03_02_0)
align=center

|169

P61P 61\Gamma_hC_6^274a(c:(a/a)):6_1(6_13_12_1)
align=center

|170

P65P 65\Gamma_hC_6^375a(c:(a/a)):6_5(6_13_12_1)
align=center

|171

P62P 62\Gamma_hC_6^476a(c:(a/a)):6_2(6_23_22_0)
align=center

|172

P64P 64\Gamma_hC_6^577a(c:(a/a)):6_4(6_23_22_0)
align=center

|173

P63P 63\Gamma_hC_6^678a(c:(a/a)):6_3(6_33_02_1)
align=center

|174

{{overline|6}}3*P{{overline|6}}P {{overline|6}}\Gamma_hC_{3h}^143s(c:(a/a)):3:m[3_03_03_0]
align=center

|175

rowspan=2|6/mrowspan=2|6*P6/mP 6/m\Gamma_hC_{6h}^153s(c:(a/a))\cdot m :6[6_03_02_0]
align=center

|176

P63/mP 63/m\Gamma_hC_{6h}^281a(c:(a/a))\cdot m :6_3[6_33_02_1]
align=center

|177

rowspan=6|622rowspan=6|226P622P 6 2 2\Gamma_hD_6^154s(c:(a/a))\cdot 2 :6(*6_03_02_0)
align=center

|178

P6122P 61 2 2\Gamma_hD_6^282a(c:(a/a))\cdot 2 :6_1(*6_13_12_1)
align=center

|179

P6522P 65 2 2\Gamma_hD_6^383a(c:(a/a))\cdot 2 :6_5(*6_13_12_1)
align=center

|180

P6222P 62 2 2\Gamma_hD_6^484a(c:(a/a))\cdot 2 :6_2(*6_23_22_0)
align=center

|181

P6422P 64 2 2\Gamma_hD_6^585a(c:(a/a))\cdot 2 :6_4(*6_23_22_0)
align=center

|182

P6322P 63 2 2\Gamma_hD_6^686a(c:(a/a))\cdot 2 :6_3(*6_33_02_1)
align=center

|183

rowspan=4|6mmrowspan=4|*66P6mmP 6 m m\Gamma_hC_{6v}^150s(c:(a/a)):m\cdot 6(*{\cdot}6{\cdot}3{\cdot}2)
align=center

|184

P6ccP 6 c c\Gamma_hC_{6v}^244h(c:(a/a)):\tilde c \cdot 6(*{:}6{:}3{:}2)
align=center

|185

P63cmP 63 c m\Gamma_hC_{6v}^380a(c:(a/a)):\tilde c \cdot 6_3(*{\cdot}6{:}3{:}2)
align=center

|186

P63mcP 63 m c\Gamma_hC_{6v}^479a(c:(a/a)):m\cdot 6_3(*{:}6{\cdot}3{\cdot}2)
align=center

|187

rowspan=4|{{overline|6}}m2rowspan=4|*223P{{overline|6}}m2P {{overline|6}} m 2\Gamma_hD_{3h}^148s(c:(a/a)):m\cdot 3:m[*{\cdot}3{\cdot}3{\cdot}3]
align=center

|188

P{{overline|6}}c2P {{overline|6}} c 2\Gamma_hD_{3h}^243h(c:(a/a)):\tilde c \cdot 3:m[*{:}3{:}3{:}3]
align=center

|189

P{{overline|6}}2mP {{overline|6}} 2 m\Gamma_hD_{3h}^347s(c:(a/a))\cdot m:3\cdot m[3_0{*}{\cdot}3]
align=center

|190

P{{overline|6}}2cP {{overline|6}} 2 c\Gamma_hD_{3h}^442h(c:(a/a))\cdot m:3\cdot \tilde c[3_0{*}{:}3]
align=center

|191

rowspan=4|6/m 2/m 2/mrowspan=4|*226P6/mmmP 6/m 2/m 2/m\Gamma_hD_{6h}^158s(c:(a/a))\cdot m:6\cdot m[*{\cdot}6{\cdot}3{\cdot}2]
align=center

|192

P6/mccP 6/m 2/c 2/c\Gamma_hD_{6h}^248h(c:(a/a))\cdot m:6\cdot\tilde c[*{:}6{:}3{:}2]
align=center

|193

P63/mcmP 63/m 2/c 2/m\Gamma_hD_{6h}^387a(c:(a/a))\cdot m:6_3\cdot\tilde c[*{\cdot}6{:}3{:}2]
align=center

|194

P63/mmcP 63/m 2/m 2/c\Gamma_hD_{6h}^488a(c:(a/a))\cdot m:6_3\cdot m[*{:}6{\cdot}3{\cdot}2]

List of cubic

class="wikitable" style="text-align:center;"

|+ Cubic Bravais lattice

Simple (P)

! Body centered (I)

! Face centered (F)

100px

| 100px

| 100px

{{Gallery

| title=Example cubic structures

| width=160 |height=170

| File:CsCl crystal.svg

| (221) Caesium chloride. Different colors for the two atom types.

| File:Sphalerite-unit-cell-depth-fade-3D-balls.png|(216) Sphalerite

| File:12-14-hedral honeycomb.png

| (223) Weaire–Phelan structure

}}

class=wikitable

|+ Cubic crystal system

!Number

! Point group

! Orbifold

! Short name

! Full name

! Schoenflies

! Fedorov

! Shubnikov

! Conway

! Fibrifold (preserving z)

! Fibrifold (preserving x, y, z)

align=center

|195

rowspan=5|23rowspan=5|332P23P 2 3\Gamma_cT^159s\left ( a:a:a\right ) :2/32^\circ(*2_02_02_02_0){:}3(*2_02_02_02_0){:}3
align=center

|196

F23F 2 3\Gamma_c^fT^261s\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :2/31^\circ(*2_02_12_02_1){:}3(*2_02_12_02_1){:}3
align=center

|197

I23I 2 3\Gamma_c^vT^360s\left ( \tfrac{a+b+c}{2}/a:a:a\right ) :2/34^{\circ\circ}(2_1{*}2_02_0){:}3(2_1{*}2_02_0){:}3
align=center

|198

P213P 21 3\Gamma_cT^489a\left ( a:a:a\right ) :2_1/31^\circ/4(2_12_1\bar{\times}){:}3(2_12_1\bar{\times}){:}3
align=center

|199

I213I 21 3\Gamma_c^vT^590a\left ( \tfrac{a+b+c}{2}/a:a:a\right ) :2_1/32^\circ/4(2_0{*}2_12_1){:}3(2_0{*}2_12_1){:}3
align=center

|200

rowspan=7|2/m {{overline|3}}rowspan=7|3{*}2Pm{{overline|3}}P 2/m {{overline|3}}\Gamma_cT_h^162s\left ( a:a:a\right ) \cdot m/ \tilde 64^-[*{\cdot}2{\cdot}2{\cdot}2{\cdot}2]{:}3[*{\cdot}2{\cdot}2{\cdot}2{\cdot}2]{:}3
align=center

|201

Pn{{overline|3}}P 2/n {{overline|3}}\Gamma_cT_h^249h\left ( a:a:a\right ) \cdot \widetilde{ab} / \tilde 64^{\circ+}(2\bar{*}_12_02_0){:}3(2\bar{*}_12_02_0){:}3
align=center

|202

Fm{{overline|3}}F 2/m {{overline|3}}\Gamma_c^fT_h^364s\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) \cdot m/ \tilde 62^-[*{\cdot}2{\cdot}2{:}2{:}2]{:}3[*{\cdot}2{\cdot}2{:}2{:}2]{:}3
align=center

|203

Fd{{overline|3}}F 2/d {{overline|3}}\Gamma_c^fT_h^450h\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) \cdot \tfrac{1}{2}\widetilde{ab} / \tilde 62^{\circ+}(2\bar{*}2_02_1){:}3(2\bar{*}2_02_1){:}3
align=center

|204

Im{{overline|3}}I 2/m {{overline|3}}\Gamma_c^vT_h^563s\left ( \tfrac{a+b+c}{2}/a:a:a\right ) \cdot m/\tilde 68^{-\circ}[2_1{*}{\cdot}2{\cdot}2]{:}3[2_1{*}{\cdot}2{\cdot}2]{:}3
align=center

|205

Pa{{overline|3}}P 21/a {{overline|3}}\Gamma_cT_h^691a\left ( a:a:a\right ) \cdot \tilde a /\tilde 62^-/4(2_12\bar{*}{:}){:}3(2_12\bar{*}{:}){:}3
align=center

|206

Ia{{overline|3}}I 21/a {{overline|3}}\Gamma_c^vT_h^792a\left ( \tfrac{a+b+c}{2}/a:a:a\right ) \cdot \tilde a /\tilde 64^-/4(*2_12{:}2{:}2){:}3(*2_12{:}2{:}2){:}3
align=center

|207

rowspan=8|432rowspan=8|432P432P 4 3 2\Gamma_cO^168s\left ( a:a:a\right ) :4/34^{\circ-}(*4_04_02_0){:}3(*2_02_02_02_0){:}6
align=center

|208

P4232P 42 3 2\Gamma_cO^298a\left ( a:a:a\right ) :4_2//34^+(*4_24_22_0){:}3(*2_02_02_02_0){:}6
align=center

|209

F432F 4 3 2\Gamma_c^fO^370s\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4/32^{\circ-}(*4_24_02_1){:}3(*2_02_12_02_1){:}6
align=center

|210

F4132F 41 3 2\Gamma_c^fO^497a\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4_1//32^+(*4_34_12_0){:}3(*2_02_12_02_1){:}6
align=center

|211

I432I 4 3 2\Gamma_c^vO^569s\left ( \tfrac{a+b+c}{2}/a:a:a\right ) :4/38^{+\circ}(4_24_02_1){:}3(2_1{*}2_02_0){:}6
align=center

|212

P4332P 43 3 2\Gamma_cO^694a\left ( a:a:a\right ) :4_3//32^+/4(4_1{*}2_1){:}3(2_12_1\bar{\times}){:}6
align=center

|213

P4132P 41 3 2\Gamma_cO^795a\left ( a:a:a\right ) :4_1//32^+/4(4_1{*}2_1){:}3(2_12_1\bar{\times}){:}6
align=center

|214

I4132I 41 3 2\Gamma_c^vO^896a\left ( \tfrac{a+b+c}{2}/:a:a:a\right ) :4_1//34^+/4(*4_34_12_0){:}3(2_0{*}2_12_1){:}6
align=center

|215

rowspan=6|{{overline|4}}3mrowspan=6|*332P{{overline|4}}3mP {{overline|4}} 3 m\Gamma_cT_d^165s\left ( a:a:a\right ) :\tilde 4 /32^\circ{:}2(*4{\cdot}42_0){:}3(*2_02_02_02_0){:}6
align=center

|216

F{{overline|4}}3mF {{overline|4}} 3 m\Gamma_c^fT_d^267s\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :\tilde 4 /31^\circ{:}2(*4{\cdot}42_1){:}3(*2_02_12_02_1){:}6
align=center

|217

I{{overline|4}}3mI {{overline|4}} 3 m\Gamma_c^vT_d^366s\left ( \tfrac{a+b+c}{2}/a:a:a\right ) :\tilde 4 /34^\circ{:}2(*{\cdot}44{:}2){:}3(2_1{*}2_02_0){:}6
align=center

|218

P{{overline|4}}3nP {{overline|4}} 3 n\Gamma_cT_d^451h\left ( a:a:a\right ) :\tilde 4 //34^\circ(*4{:}42_0){:}3(*2_02_02_02_0){:}6
align=center

|219

F{{overline|4}}3cF {{overline|4}} 3 c\Gamma_c^fT_d^552h\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :\tilde 4 //32^{\circ\circ}(*4{:}42_1){:}3(*2_02_12_02_1){:}6
align=center

|220

I{{overline|4}}3dI {{overline|4}} 3 d\Gamma_c^vT_d^693a\left ( \tfrac{a+b+c}{2}/a:a:a\right ) :\tilde 4 //34^\circ/4(4\bar{*}2_1){:}3(2_0{*}2_12_1){:}6
align=center

|221

rowspan=10|4/m {{overline|3}} 2/mrowspan=10|*432Pm{{overline|3}}mP 4/m {{overline|3}} 2/m\Gamma_cO_h^171s\left ( a:a:a\right ) :4/\tilde 6 \cdot m4^-{:}2[*{\cdot}4{\cdot}4{\cdot}2]{:}3[*{\cdot}2{\cdot}2{\cdot}2{\cdot}2]{:}6
align=center

|222

Pn{{overline|3}}nP 4/n {{overline|3}} 2/n\Gamma_cO_h^253h\left ( a:a:a\right ) :4/\tilde 6 \cdot \widetilde{abc}8^{\circ\circ}(*4_04{:}2){:}3(2\bar{*}_12_02_0){:}6
align=center

|223

Pm{{overline|3}}nP 42/m {{overline|3}} 2/n\Gamma_cO_h^3102a\left ( a:a:a\right ) :4_2//\tilde 6 \cdot \widetilde{abc}8^\circ[*{\cdot}4{:}4{\cdot}2]{:}3[*{\cdot}2{\cdot}2{\cdot}2{\cdot}2]{:}6
align=center

|224

Pn{{overline|3}}mP 42/n {{overline|3}} 2/m\Gamma_cO_h^4103a\left ( a:a:a\right ) :4_2//\tilde 6 \cdot m4^+{:}2(*4_24{\cdot}2){:}3(2\bar{*}_12_02_0){:}6
align=center

|225

Fm{{overline|3}}mF 4/m {{overline|3}} 2/m\Gamma_c^fO_h^573s\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4/\tilde 6 \cdot m2^-{:}2[*{\cdot}4{\cdot}4{:}2]{:}3[*{\cdot}2{\cdot}2{:}2{:}2]{:}6
align=center

|226

Fm{{overline|3}}cF 4/m {{overline|3}} 2/c\Gamma_c^fO_h^654h\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4/\tilde 6 \cdot \tilde c4^{--}[*{\cdot}4{:}4{:}2]{:}3[*{\cdot}2{\cdot}2{:}2{:}2]{:}6
align=center

|227

Fd{{overline|3}}mF 41/d {{overline|3}} 2/m\Gamma_c^fO_h^7100a\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4_1//\tilde 6 \cdot m2^+{:}2(*4_14{\cdot}2){:}3(2\bar{*}2_02_1){:}6
align=center

|228

Fd{{overline|3}}cF 41/d {{overline|3}} 2/c\Gamma_c^fO_h^8101a\left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4_1//\tilde 6 \cdot \tilde c4^{++}(*4_14{:}2){:}3(2\bar{*}2_02_1){:}6
align=center

|229

Im{{overline|3}}mI 4/m {{overline|3}} 2/m\Gamma_c^vO_h^972s\left ( \tfrac{a+b+c}{2}/a:a:a\right ) :4/\tilde 6 \cdot m8^\circ{:}2[*{\cdot}4{\cdot}4{:}2]{:}3[2_1{*}{\cdot}2{\cdot}2]{:}6
align=center

|230

Ia{{overline|3}}dI 41/a {{overline|3}} 2/d\Gamma_c^vO_h^{10}99a\left ( \tfrac{a+b+c}{2}/a:a:a\right ) :4_1//\tilde 6 \cdot \tfrac{1}{2}\widetilde{abc}8^\circ/4(*4_14{:}2){:}3(*2_12{:}2{:}2){:}6

Notes

{{Reflist|group=note}}

References

{{Reflist}}