List of uniform polyhedra by spherical triangle
{{short description|none}}
{{Polyhedron types}}
There are many relations among the uniform polyhedra. This List of uniform polyhedra by spherical triangle groups them by the Wythoff symbol.
Key
class="wikitable" |
Image Name Bowers pet name V Number of vertices,E Number of edges,F Number of faces=Face configuration ?=Euler characteristic, group=Symmetry group Wythoff symbol - Vertex figure W - Wenninger number, U - Uniform number, K- Kalido number, C -Coxeter number alternative name second alternative name |
The vertex figure can be discovered by considering the Wythoff symbol:
- p|q r - 2p edges, alternating q-gons and r-gons. Vertex figure (q.r)p.
- p|q 2 - p edges, q-gons (here r=2 so the r-gons are degenerate lines).
- 2|q r - 4 edges, alternating q-gons and r-gons
- q r|p - 4 edges, 2p-gons, q-gons, 2p-gons r-gons, Vertex figure 2p.q.2p.r.
- q 2|p - 3 edges, 2p-gons, q-gons, 2p-gons, Vertex figure 2p.q.2p.
- p q r|- 3 edges, 2p-gons, 2q-gons, 2r-gons, vertex figure 2p.2q.2r
Convex
class="wikitable" |
Spherical triangle !p{{pipe}}q r !q{{pipe}}p r !r{{pipe}}p q !q r{{pipe}}p !p r{{pipe}}q !p q{{pipe}}r !p q r{{pipe}} !{{pipe}}p q r |
---|
valign="top"
| |colspan="2" align="center"|{{Reg polyhedra db|Polyhedra smallbox2|T}} |Octahedron |colspan="2" align="center"|{{Semireg polyhedra db|Polyhedra smallbox2|tT}} |Cuboctahedron |Truncated octahedron |Icosahedron |
valign="top"
| |{{Reg polyhedra db|Polyhedra smallbox2|O}} |{{Reg polyhedra db|Polyhedra smallbox2|C}} |{{Semireg polyhedra db|Polyhedra smallbox2|CO}} |{{Semireg polyhedra db|Polyhedra smallbox2|tC}} |{{Semireg polyhedra db|Polyhedra smallbox2|tO}} |{{Semireg polyhedra db|Polyhedra smallbox2|lrCO}} |{{Semireg polyhedra db|Polyhedra smallbox2|grCO}} |{{Semireg polyhedra db|Polyhedra smallbox2|nCO}} |
valign="top"
| |{{Reg polyhedra db|Polyhedra smallbox2|I}} |{{Reg polyhedra db|Polyhedra smallbox2|D}} |{{Semireg polyhedra db|Polyhedra smallbox2|ID}} |{{Semireg polyhedra db|Polyhedra smallbox2|tD}} |{{Semireg polyhedra db|Polyhedra smallbox2|tI}} |{{Semireg polyhedra db|Polyhedra smallbox2|lrID}} |{{Semireg polyhedra db|Polyhedra smallbox2|grID}} |{{Semireg polyhedra db|Polyhedra smallbox2|nID}} |
Non-convex
= a b 2 =
== 3 3 2 ==
Group
class="wikitable" |
Spherical triangle !p{{pipe}}q r !q{{pipe}}p r !r{{pipe}}p q !q r{{pipe}}p !p r{{pipe}}q !p q{{pipe}}r !p q r{{pipe}} !{{pipe}}p q r |
---|
valign=top
| | | | | |{{Uniform polyhedra db|Polyhedra smallbox2|ThH}} | | |
==4 3 2==
Group
class="wikitable" |
Spherical triangle !p{{pipe}}q r !q{{pipe}}p r !r{{pipe}}p q !q r{{pipe}}p !p r{{pipe}}q !p q{{pipe}}r !p q r{{pipe}} !{{pipe}}p q r |
---|
valign=top
| |octahedron |cube | |{{Uniform polyhedra db|Polyhedra smallbox2|stH}} | |{{Uniform polyhedra db|Polyhedra smallbox2|ugrCO}} |{{Uniform polyhedra db|Polyhedra smallbox2|lrH}} | |
valign=top
| | | | | | | |{{Uniform polyhedra db|Polyhedra smallbox2|gtCO}} | |
valign=top
| | | | | | | |{{Uniform polyhedra db|Polyhedra smallbox2|grH}} |
==5 3 2==
Group
class="wikitable" |
Spherical triangle !p{{pipe}}q r !q{{pipe}}p r !r{{pipe}}p q !q r{{pipe}}p !p r{{pipe}}q !p q{{pipe}}r |
---|
valign=top
| |{{Reg polyhedra db|Polyhedra smallbox2|gI}} |{{Reg polyhedra db|Polyhedra smallbox2|gsD}} |{{Uniform polyhedra db|Polyhedra smallbox2|gID}} |{{Uniform polyhedra db|Polyhedra smallbox2|gstD}} |{{Uniform polyhedra db|Polyhedra smallbox2|gtI}} |{{Uniform polyhedra db|Polyhedra smallbox2|ugrID}} |
valign=top
| !p q r{{pipe}} !p q r{{pipe}} !p q r{{pipe}} !{{pipe}}p q r ! ! ! |
valign=top
| |{{Uniform polyhedra db|Polyhedra smallbox2|rI}} |{{Uniform polyhedra db|Polyhedra smallbox2|gtID}} |{{Uniform polyhedra db|Polyhedra smallbox2|grD}} | | | |
==5 5 2==
Group
class="wikitable" |
Spherical triangle !p{{pipe}}q r !q{{pipe}}p r !r{{pipe}}p q !q r{{pipe}}p !p r{{pipe}}q !p q{{pipe}}r |
---|
valign=top
| |{{Reg polyhedra db|Polyhedra smallbox2|lsD}} |{{Reg polyhedra db|Polyhedra smallbox2|gD}} |{{Uniform polyhedra db|Polyhedra smallbox2|DD}} |{{Uniform polyhedra db|Polyhedra smallbox2|lstD}} |{{Uniform polyhedra db|Polyhedra smallbox2|tgD}} |{{Uniform polyhedra db|Polyhedra smallbox2|rDD}} |
!p q r{{pipe}}
!p q r{{pipe}} !{{pipe}}p q r ! ! ! |
valign=top
| |{{Uniform polyhedra db|Polyhedra smallbox2|lrD}} |{{Uniform polyhedra db|Polyhedra smallbox2|tDD}} | | | | |
=a b 3=
==3 3 3==
Group
class="wikitable" |
Spherical triangle !p{{pipe}}q r !q{{pipe}}p r !r{{pipe}}p q !q r{{pipe}}p !p r{{pipe}}q !p q{{pipe}}r !p q r{{pipe}} !{{pipe}}p q r |
---|
valign=top
| | | | |colspan=2 align=center|{{Uniform polyhedra db|Polyhedra smallbox2|OhO}} | |
==4 3 3==
Group
class="wikitable" |
Spherical triangle !p{{pipe}}q r !q{{pipe}}p r !r{{pipe}}p q !q r{{pipe}}p !p r{{pipe}}q !p q{{pipe}}r !p q r{{pipe}} !{{pipe}}p q r |
---|
==5 3 3==
Group
class="wikitable" |
Spherical triangle !p{{pipe}}q r !q{{pipe}}p r !r{{pipe}}p q !q r{{pipe}}p !p r{{pipe}}q !p q{{pipe}}r |
---|
valign=top
| |{{Uniform polyhedra db|Polyhedra smallbox2|gdID}} |colspan=2 align=center|{{Uniform polyhedra db|Polyhedra smallbox2|ldID}} |{{Uniform polyhedra db|Polyhedra smallbox2|gIhD}} |{{Uniform polyhedra db|Polyhedra smallbox2|lIhD}} |{{Uniform polyhedra db|Polyhedra smallbox2|gIID}} | |
!p q r{{pipe}}
!p q r{{pipe}} !{{pipe}}p q r ! ! ! |
valign=top
| |{{Uniform polyhedra db|Polyhedra smallbox2|lIID}} |{{Uniform polyhedra db|Polyhedra smallbox2|lDI}} | | | | |
==4 4 3==
Group
class="wikitable" |
Spherical triangle !p{{pipe}}q r !q{{pipe}}p r !r{{pipe}}p q !q r{{pipe}}p !p r{{pipe}}q !p q{{pipe}}r !p q r{{pipe}} !{{pipe}}p q r |
---|
valign=top
| | | | | |{{Uniform polyhedra db|Polyhedra smallbox2|ChO}} |{{Uniform polyhedra db|Polyhedra smallbox2|gCCO}} |{{Uniform polyhedra db|Polyhedra smallbox2|ctCO}} |
valign=top
| | | | |colspan=2 align=center|{{Uniform polyhedra db|Polyhedra smallbox2|lCCO}} | |
==5 5 3==
Group
class="wikitable" |
Spherical triangle !p{{pipe}}q r !q{{pipe}}p r !r{{pipe}}p q !q r{{pipe}}p !p r{{pipe}}q !p q{{pipe}}r !p q r{{pipe}} !{{pipe}}p q r |
---|
valign=top
| | | | |{{Uniform polyhedra db|Polyhedra smallbox2|lDhI}} |{{Uniform polyhedra db|Polyhedra smallbox2|gDI}} |{{Uniform polyhedra db|Polyhedra smallbox2|lDID}} |
valign=top
| | | | |{{Uniform polyhedra db|Polyhedra smallbox2|gDhI}} |{{Uniform polyhedra db|Polyhedra smallbox2|ldDID}} |{{Uniform polyhedra db|Polyhedra smallbox2|gdDID}} |
valign=top
| | | | |{{Uniform polyhedra db|Polyhedra smallbox2|lDID}} |{{Uniform polyhedra db|Polyhedra smallbox2|gDID}} |
valign=top
| | |{{Uniform polyhedra db|Polyhedra smallbox2|dDD}} | |{{Uniform polyhedra db|Polyhedra smallbox2|IDD}} |{{Uniform polyhedra db|Polyhedra smallbox2|ldDID}} |{{Uniform polyhedra db|Polyhedra smallbox2|itDD}} |
=a b 5=
==5 5 5==
Group
class="wikitable" |
Spherical triangle !p{{pipe}}q r !q{{pipe}}p r !r{{pipe}}p q !q r{{pipe}}p !p r{{pipe}}q !p q{{pipe}}r !p q r{{pipe}} !{{pipe}}p q r |
---|
valign=top
| | | | | |colspan=2 align=center|{{Uniform polyhedra db|Polyhedra smallbox2|gDhD}} | |