Lituus (mathematics)

{{Short description|Spiral}}

{{one source |date=May 2024}}

image:lituus.svg

The lituus spiral ({{IPAc-en|ˈ|l|ɪ|tj|u|.|ə|s}}) is a spiral in which the angle {{mvar|θ}} is inversely proportional to the square of the radius {{mvar|r}}.

This spiral, which has two branches depending on the sign of {{mvar|r}}, is asymptotic to the {{mvar|x}} axis. Its points of inflexion are at

: (\theta, r) = \left(\tfrac12, \pm\sqrt{2k}\right).

The curve was named for the ancient Roman lituus by Roger Cotes in a collection of papers entitled Harmonia Mensurarum (1722), which was published six years after his death.

Coordinate representations

= Polar coordinates =

The representations of the lituus spiral in polar coordinates {{math|(r, θ)}} is given by the equation

: r = \frac{a}{\sqrt{\theta}},

where {{math|θ ≥ 0}} and {{math|k ≠ 0}}.

= Cartesian coordinates =

The lituus spiral with the polar coordinates {{math|r {{=}} {{sfrac|a|{{lower|0.2em|{{sqrt|θ}}}}}}}} can be converted to Cartesian coordinates like any other spiral with the relationships {{math|x {{=}} r cos θ}} and {{math|y {{=}} r sin θ}}. With this conversion we get the parametric representations of the curve:

: \begin{align}

x &= \frac{a}{\sqrt{\theta}} \cos\theta, \\

y &= \frac{a}{\sqrt{\theta}} \sin\theta. \\

\end{align}

These equations can in turn be rearranged to an equation in {{mvar|x}} and {{mvar|y}}:

: \frac{y}{x} = \tan\left( \frac{a^2}{x^2 + y^2} \right).

{{hidden begin|title=Derivation of the equation in Cartesian coordinates|showhide=left}}

  1. Divide y by x:\frac{y}{x} = \frac{\frac{a}{\sqrt{\theta}} \sin\theta}{\frac{a}{\sqrt{\theta}} \cos\theta} \Rightarrow \frac{y}{x} = \tan\theta.
  2. Solve the equation of the lituus spiral in polar coordinates: r = \frac{a}{\sqrt{\theta}} \Leftrightarrow \theta = \frac{a^2}{r^2}.
  3. Substitute \theta = \frac{a^2}{r^2}: \frac{y}{x} = \tan\left( \frac{a^2}{r^2} \right).
  4. Substitute r = \sqrt{x^2 + y^2}: \frac{y}{x} = \tan\left( \frac{a^2}{\left( \sqrt{x^2 + y^2} \right)^2} \right) \Rightarrow \frac{y}{x} = \tan\left( \frac{a^2}{x^2 + y^2} \right).

{{hidden end}}

Geometrical properties

= Curvature =

The curvature of the lituus spiral can be determined using the formula{{Mathworld |id=Lituus |access-date=2023-02-04}}

: \kappa = \left( 8 \theta^2 - 2 \right) \left( \frac{\theta}{1 + 4 \theta^2} \right)^\frac32.

= Arc length =

In general, the arc length of the lituus spiral cannot be expressed as a closed-form expression, but the arc length of the lituus spiral can be represented as a formula using the Gaussian hypergeometric function:

: L = 2 \sqrt{\theta} \cdot \operatorname{_2 F_1}\left( -\frac{1}{2}, -\frac{1}{4}; \frac{3}{4}; -\frac{1}{4 \theta^2} \right) - 2 \sqrt{\theta_0} \cdot \operatorname{_2 F_1}\left( -\frac{1}{2}, -\frac{1}{4}; \frac{3}{4}; -\frac{1}{4 \theta_0^2} \right),

where the arc length is measured from {{math|θ {{=}} θ0}}.

= Tangential angle =

The tangential angle of the lituus spiral can be determined using the formula

: \phi = \theta - \arctan 2\theta.

References

{{reflist}}