Local trace formula

{{short description|On the character of the representation of a reductive algebraic group}}

In mathematics, the local trace formula {{harv|Arthur|1991}} is a local analogue of the Arthur–Selberg trace formula that describes the character of the representation of G(F) on the discrete part of L2(G(F)), for G a reductive algebraic group over a local field F.

References

  • {{Citation | authorlink=James Arthur (mathematician) | last1=Arthur | first1=James | title=A local trace formula | url=http://www.numdam.org/item?id=PMIHES_1991__73__5_0 |mr=1114210 | year=1991 | journal=Publications Mathématiques de l'IHÉS | volume=73 | issn=1618-1913 | issue=73 | pages=5–96| doi=10.1007/BF02699256 | s2cid=17691368 }}

{{numtheory-stub}}

Category:Automorphic forms

Category:Theorems in number theory