Lomax distribution

{{Short description|Heavy-tail probability distribution}}

{{Probability distribution

| name =Lomax

| type =density

| pdf_image =File:LomaxPDF.png

| cdf_image =File:LomaxCDF.png

| parameters ={{ubl

| \alpha > 0 shape (real)

| \lambda >0 scale (real)

}}

| support =x \ge 0

| pdf ={\alpha \over \lambda} \left(1 + \frac x\lambda \right)^{-(\alpha+1)}

| cdf =1 - \left(1 + \frac x\lambda \right)^{-\alpha}

| quantile = \lambda \left((1 - p)^{-1/\alpha} -1\right)

| mean = \frac\lambda{\alpha -1} \text{ for } \alpha > 1; undefined otherwise

| median =\lambda\left(\sqrt[\alpha]{2} - 1\right)

| mode = 0

| variance = \begin{cases}

\frac{\lambda^2 \alpha}{(\alpha-1)^2(\alpha-2)} & \alpha > 2 \\

\infty & 1 < \alpha \le 2 \\

\text{undefined} & \text{otherwise}

\end{cases}

| skewness =\frac{2(1+\alpha)}{\alpha-3}\,\sqrt{\frac{\alpha-2}{\alpha}}\text{ for }\alpha>3\,

| kurtosis =\frac{6(\alpha^3+\alpha^2-6\alpha-2)}{\alpha(\alpha-3)(\alpha-4)}\text{ for }\alpha>4\,

| entropy =1+\frac{1}{\alpha}-\log\frac{\alpha}{\beta}

| mgf =\alpha e^{-\lambda t}(-\lambda t)^{\alpha}\Gamma(-\alpha, -\lambda t)\,

| char =\alpha e^{-i \lambda t}(-i \lambda t)^{\alpha}\Gamma(-\alpha, -i \lambda t)\,

}}

The Lomax distribution, conditionally also called the Pareto Type II distribution, is a heavy-tail probability distribution used in business, economics, actuarial science, queueing theory and Internet traffic modeling.Lomax, K. S. (1954) "Business Failures; Another example of the analysis of failure data". Journal of the American Statistical Association, 49, 847–852. {{JSTOR|2281544}}{{cite book|last1=Johnson|first1=N. L.|last2=Kotz|first2=S.|last3=Balakrishnan|first3=N.|title=Continuous univariate distributions|edition=2nd|volume=1|publisher=Wiley|place=New York|year=1994|chapter=20 Pareto distributions|page=573}}J. Chen, J., Addie, R. G., Zukerman. M., Neame, T. D. (2015) "Performance Evaluation of a Queue Fed by a Poisson Lomax Burst Process", IEEE Communications Letters, 19, 3, 367–370. It is named after K. S. Lomax. It is essentially a Pareto distribution that has been shifted so that its support begins at zero.Van Hauwermeiren M and Vose D (2009). [http://vosesoftware.com/knowledgebase/whitepapers/pdf/ebookdistributions.pdf A Compendium of Distributions] [ebook]. Vose Software, Ghent, Belgium. Available at www.vosesoftware.com.

Characterization

= Probability density function =

The probability density function (pdf) for the Lomax distribution is given by

:p(x) = \frac\alpha\lambda \left(1 + \frac x\lambda \right)^{-(\alpha+1)}, \qquad x \geq 0,

with shape parameter \alpha > 0 and scale parameter \lambda > 0. The density can be rewritten in such a way that more clearly shows the relation to the Pareto Type I distribution. That is:

:p(x) = \frac{\alpha\lambda^\alpha}{(x + \lambda)^{\alpha+1}}.

= Non-central moments =

The \nuth non-central moment E\left[X^\nu\right] exists only if the shape parameter \alpha strictly exceeds \nu, when the moment has the value

:E\left(X^\nu\right) = \frac{\lambda^\nu \Gamma(\alpha - \nu)\Gamma(1 + \nu)}{\Gamma(\alpha)}.

Related distributions

= Relation to the Pareto distribution =

The Lomax distribution is a Pareto Type I distribution shifted so that its support begins at zero. Specifically:

:\text{If } Y \sim \operatorname{Pareto}(x_m = \lambda, \alpha), \text{ then } Y - x_m \sim \operatorname{Lomax}(\alpha,\lambda).

The Lomax distribution is a Pareto Type II distribution with xm = λ and μ = 0:{{citation|title=Statistical Size Distributions in Economics and Actuarial Sciences|volume=470|series=Wiley Series in Probability and Statistics|first1=Christian|last1=Kleiber|first2=Samuel|last2=Kotz|publisher=John Wiley & Sons|year=2003|isbn=9780471457169|page=60|url=https://books.google.com/books?id=7wLGjyB128IC&pg=PA60}}.

:\text{If } X \sim \operatorname{Lomax}(\alpha, \lambda) \text{ then } X \sim \text{P(II)}\left(x_m = \lambda, \alpha, \mu = 0\right).

= Relation to the generalized Pareto distribution =

The Lomax distribution is a special case of the generalized Pareto distribution. Specifically:

:\mu = 0,~ \xi = {1 \over \alpha},~ \sigma = {\lambda \over \alpha} .

= Relation to the beta prime distribution =

The Lomax distribution with scale parameter λ = 1 is a special case of the beta prime distribution. If X has a Lomax distribution, then \frac{X}{\lambda} \sim \beta^\prime(1, \alpha).

= Relation to the F distribution =

The Lomax distribution with shape parameter α = 1 and scale parameter λ = 1 has density f(x) = \frac{1}{(1 + x)^2}, the same distribution as an F(2,2) distribution. This is the distribution of the ratio of two independent and identically distributed random variables with exponential distributions.

= Relation to the q-exponential distribution =

The Lomax distribution is a special case of the q-exponential distribution. The q-exponential extends this distribution to support on a bounded interval. The Lomax parameters are given by:

:\alpha = {{2 - q} \over {q - 1}}, ~ \lambda = {1 \over \lambda_q(q - 1)} .

= Relation to the logistic distribution =

The logarithm of a Lomax(shape = 1.0, scale = λ)-distributed variable follows a logistic distribution with location log(λ) and scale 1.0.

= Gamma-exponential (scale-) mixture connection =

The Lomax distribution arises as a mixture of exponential distributions where the mixing distribution of the rate is a gamma distribution.

If λ | k,θ ~ Gamma(shape = k, scale = θ) and X | λ ~ Exponential(rate = λ) then the marginal distribution of X | k,θ is Lomax(shape = k, scale = 1/θ).

Since the rate parameter may equivalently be reparameterized to a scale parameter, the Lomax distribution constitutes a scale mixture of exponentials (with the exponential scale parameter following an inverse-gamma distribution).

See also

References