Lonsdaleite
{{short description|Hexagonal lattice allotrope of carbon}}
{{use dmy dates |date=May 2021}}
{{Infobox mineral
| name = Lonsdaleite
| boxwidth =
| boxbgcolor =
| image = Lonsdaleite.png
| imagesize =
| alt =
| caption = Crystal structure of lonsdaleite
| category =
| formula = C
| strunz = 1.CB.10b
| dana =
| system = Hexagonal
| class = Dihexagonal dipyramidal (6/mmm)
H-M symbol: (6/m 2/m 2/m)
| symmetry = P63/mmc
| unit cell = a = 2.51 Å, c = 4.12 Å; Z = 4
| molweight =
| color = Gray in crystals, pale yellowish to brown in broken fragments
| habit = Cubes in fine-grained aggregates
| twinning =
| cleavage =
| fracture =
| tenacity =
| mohs = 7–8 (for impure specimens)
| luster = Adamantine
| streak =
| diaphaneity = Transparent
| gravity = 3.2
| density =
| polish =
| opticalprop = Uniaxial (+/−)
| refractive = n = 2.404
| birefringence =
| pleochroism =
| 2V =
| dispersion =
| extinction =
| length fast/slow =
| fluorescence =
| absorption =
| melt =
| fusibility =
| diagnostic =
| solubility =
| impurities =
| alteration =
| other =
| prop1 =
| prop1text =
| SMILES = C1C7(CC(C6)C9)C2CC3C68C4CC5C9(C678)CC7C(C690)C5CC4C9C3CC2C0C1C7
| Jmol = C1C7(C(CC4C3)C(C36)C9)C2C4C3C68C4CC5C9(C678)CC7C(C690)C5CC4C9C3CC2C0C1C7
{{cite web
|title=Lonsdaleite
|website=Mindat.org
|url=http://www.mindat.org/min-2431.html
}}
{{cite web
|title=Lonsdaleite
|series=Handbook of Mineralogy
|via=University of Arizona, Department of Geology
|url=http://rruff.geo.arizona.edu/doclib/hom/lonsdaleite.pdf
}}
{{cite web
|title=Lonsdaleite data
|website=Webmineral
|url=http://webmineral.com/data/Lonsdaleite.shtml
}}
}}
Lonsdaleite (named in honour of Kathleen Lonsdale), also called hexagonal diamond in reference to the crystal structure, is an allotrope of carbon with a hexagonal lattice, as opposed to the cubical lattice of conventional diamond. It is found in nature in meteorite debris; when meteors containing graphite strike the Earth, the immense heat and stress of the impact transforms the graphite into diamond, but retains graphite's hexagonal crystal lattice. Lonsdaleite was first identified in 1967 from the Canyon Diablo meteorite, where it occurs as microscopic crystals associated with ordinary diamond.
{{cite journal
|last1= Frondel |first1= C.
|last2=Marvin |first2=U.B.
|year=1967
|title = Lonsdaleite, a new hexagonal polymorph of diamond
| journal = Nature
|volume = 214 |issue=5088 |pages = 587–589
|doi = 10.1038/214587a0 |bibcode = 1967Natur.214..587F
|s2cid = 4184812
}}
{{cite journal
|first1=C. |last1=Frondel
|first2=U.B. |last2=Marvin
|year=1967
|title = Lonsdaleite, a hexagonal polymorph of diamond
|journal = American Mineralogist
|volume=52
|issue=5088
|page=587
|doi=10.1038/214587a0
|bibcode=1967Natur.214..587F
|s2cid=4184812
}}
It is translucent and brownish-yellow and has an index of refraction of 2.40–2.41 and a specific gravity of 3.2–3.3. Its hardness is theoretically superior to that of cubic diamond (up to 58% more), according to computational simulations, but natural specimens exhibited somewhat lower hardness through a large range of values (from 7–8 on Mohs hardness scale). The cause is speculated to be due to the samples having been riddled with lattice defects and impurities.
{{cite book
|first1=G.M. |last1=Carlomagno
|first2=C.A. |last2=Brebbia
|year=2011
|title=Computational Methods and Experimental Measurements
|volume=XV
|publisher=WIT Press
|isbn=978-1-84564-540-3
}}
In addition to meteorite deposits, hexagonal diamond has been synthesized in the laboratory (1966 or earlier; published in 1967) by compressing and heating graphite either in a static press or using explosives.
Hardness
According to the conventional interpretation of the results of examining the meagre samples collected from meteorites or manufactured in the lab, lonsdaleite has a hexagonal unit cell, related to the diamond unit cell in the same way that the hexagonal and cubic close packed crystal systems are related. Its diamond structure can be considered to be made up of interlocking rings of six carbon atoms, in the chair conformation. In lonsdaleite, some rings are in the boat conformation instead. At nanoscale dimensions, cubic diamond is represented by diamondoids while hexagonal diamond is represented by wurtzoids.
{{cite journal
|last=Abdulsattar |first=M.
|year=2015
|title=Molecular approach to hexagonal and cubic diamond nanocrystals
|journal=Carbon Letters
|volume=16 |issue=3 |pages=192–197
|doi=10.5714/CL.2015.16.3.192
|doi-access=free
}}
In diamond, all the carbon-to-carbon bonds, both within a layer of rings and between them, are in the staggered conformation, thus causing all four cubic-diagonal directions to be equivalent; whereas in lonsdaleite the bonds between layers are in the eclipsed conformation, which defines the axis of hexagonal symmetry.
Mineralogical simulation predicts lonsdaleite to be 58% harder than diamond on the <100> face, and to resist indentation pressures of 152 GPa, whereas diamond would break at 97 GPa.
{{cite journal
|author1=Pan, Zicheng |author2=Sun, Hong
|author3=Zhang, Yi |author4=Chen, Changfeng
|name-list-style=amp
|date=2009
|title=Harder than diamond: Superior indentation strength of wurtzite BN and lonsdaleite
|journal=Physical Review Letters
|volume=102 |issue=5 |page=055503
|doi=10.1103/PhysRevLett.102.055503
|pmid=19257519 |bibcode=2009PhRvL.102e5503P
}}
- {{cite news |author=Lisa Zyga |date=12 February 2009 |title=Scientists Discover Material Harder Than Diamond |work=Phys.org |url=http://www.physorg.com/news153658987.html}} This is yet exceeded by IIa diamond's <111> tip hardness of 162 GPa.
The extrapolated properties of lonsdaleite have been questioned, particularly its superior hardness, since specimens under crystallographic inspection have not shown a bulk hexagonal lattice structure, but instead a conventional cubic diamond dominated by structural defects that include hexagonal sequences.
{{cite journal
|first1=P. |last1=Nemeth |first2=L.A.J. |last2=Garvie
|first3=T. |last3=Aoki |first4=D. |last4=Natalia
|first5=L. |last5=Dubrovinsky |first6=P.R. |last6=Buseck
|year=2014
|title=Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material
|journal=Nature Communications
|volume=5 |pages=5447
|pmid=25410324 |bibcode=2014NatCo...5.5447N
|doi=10.1038/ncomms6447 |doi-access=free
|hdl=2286/R.I.28362|hdl-access=free}}
A quantitative analysis of the X-ray diffraction data of lonsdaleite has shown that about equal amounts of hexagonal and cubic stacking sequences are present. Consequently, it has been suggested that "stacking disordered diamond" is the most accurate structural description of lonsdaleite.
{{cite journal
|author1=Salzmann, C.G.
|author2=Murray, B.J.
|author3=Shephard, J.J.
|date=2015
|title=Extent of stacking disorder in diamond
|journal=Diamond and Related Materials
|volume=59 |pages=69–72
|arxiv=1505.02561 |bibcode=2015DRM....59...69S
|s2cid=53416525 |doi=10.1016/j.diamond.2015.09.007
|url=http://eprints.whiterose.ac.uk/93345/
}}
On the other hand, recent shock experiments with in situ X-ray diffraction show strong evidence for creation of relatively pure lonsdaleite in dynamic high-pressure environments comparable to meteorite impacts.
{{cite journal
|author1 =Kraus, D. |author2 =Ravasio, A.
|author3 =Gauthier, M. |author4 =Gericke, D.O.
|author5 =Vorberger, J. |author6 =Frydrych, S.
|author7 =Helfrich, J. |author8 =Fletcher, L.B.
|author9 =Schaumann, G. |author10=Nagler, B.
|author11= Barbrel, B. |author12=Bachmann, B.
|author13=Gamboa, E.J. |author14=Goede, S.
|author15=Granados, E. |author16=Gregori, G.
|author17=Lee, H.J. |author18=Neumayer, P.
|author19=Schumaker, W. |author20=Doeppner, T.
|author21=Falcone, R.W. |author22=Glenzer, S.H.
|author23=Roth, M.
|year=2016
|title=Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
|journal=Nature Communications
|volume=7 |pages=10970
|pmid=26972122 |doi=10.1038/ncomms10970
|bibcode=2016NatCo...710970K |pmc=4793081
}}
{{cite journal
|last1=Turneaure |first1=Stefan J. |last2=Sharma |first2=Surinder M.
|last3=Volz |first3=Travis J. |last4=Winey |first4=J.M.
|last5=Gupta |first5=Yogendra M.
|date=2017-10-01
|title=Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds
|journal=Science Advances
|volume=3 |issue=10 |page=eaao3561
|doi=10.1126/sciadv.aao3561 |pmid=29098183
|issn=2375-2548 |pmc=5659656
|bibcode=2017SciA....3O3561T }}
Occurrence
File:Popigai nanodiamonds.jpg: (a) is pure diamond, while (b) is diamond with some lonsdaleite impurities.]]
Lonsdaleite occurs as microscopic crystals associated with diamond in several meteorites: Canyon Diablo,{{cite web |last=Lea |first=Robert |title=Dwarf planet collision may have sent strange ultra-hard diamonds to Earth |website=Space.com |date=2022-09-12 |url=https://www.space.com/meteorite-strange-form-of-diamond |access-date=2022-09-13}} Kenna, and Allan Hills 77283. It is also naturally occurring in non-bolide diamond placer deposits in the Sakha Republic.
{{cite journal
|author=Kaminskii, F.V. |author2=G.K. Blinova |author3=E.M. Galimov |author4=G.A. Gurkina |author5=Y.A. Klyuev |author6=L.A. Kodina |author7=V.I. Koptil |author8=V.F. Krivonos |author9=L.N. Frolova |author10=A.Y. Khrenov
|date=1985
|title=Polycrystalline aggregates of diamond with lonsdaleite from Yakutian [Sakhan] placers
|journal=Mineral. Zhurnal
|volume=7 |pages=27–36
}}
Material with d-spacings consistent with Lonsdaleite has been found in sediments with highly uncertain dates at Lake Cuitzeo, in the state of Guanajuato, Mexico, by proponents of the controversial Younger Dryas impact hypothesis,
{{cite journal
|last1=Israde-Alcantara |first1=I.
|last2=Bischoff |first2=J.L.
|last3=Dominguez-Vazquez |first3=G.
|last4=Li |first4=H.-C. |last5=Decarli |first5=P.S.
|last6=Bunch |first6=T.E. |last7=Wittke |first7=J.H.
|last8=Weaver |first8=J.C. |last9=Firestone |first9=R.B.
|last10=West |first10=A. |last11=Kennett |first11=J.P.
|last12=Mercer |first12=C. |last13=Xie |first13=S.
|last14=Richman |first14=E.K. |last15=Kinzie |first15=C.R.
|last16=Wolbach |first16=W.S. |display-authors=6
|year=2012
|title=Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis
|journal=Proceedings of the National Academy of Sciences
|volume=109 |issue=13 |pages=E:738–747
|pmid=22392980 |doi=10.1073/pnas.1110614109
|bibcode=2012PNAS..109E.738I |pmc=3324006
|doi-access=free
}}
which is now refuted by earth scientists and planetary impact specialists.{{Cite journal |last=Holliday |first=Vance T. |last2=Daulton |first2=Tyrone L. |last3=Bartlein |first3=Patrick J. |last4=Boslough |first4=Mark B. |last5=Breslawski |first5=Ryan P. |last6=Fisher |first6=Abigail E. |last7=Jorgeson |first7=Ian A. |last8=Scott |first8=Andrew C. |last9=Koeberl |first9=Christian |last10=Marlon |first10=Jennifer |last11=Severinghaus |first11=Jeffrey |last12=Petaev |first12=Michail I. |last13=Claeys |first13=Philippe |date=2023-07-26 |title=Comprehensive refutation of the Younger Dryas Impact Hypothesis (YDIH) |url=https://linkinghub.elsevier.com/retrieve/pii/S0012825223001915 |journal=Earth-Science Reviews |language=en |pages=104502 |doi=10.1016/j.earscirev.2023.104502|doi-access=free }} Claims of Lonsdaleite and other nanodiamonds in a layer of the Greenland ice sheet that could be of Younger Dryas age have not been confirmed and are now disputed.{{cite web |last1=Kurbatov |first1=Andrei V. |last2=Mayewski |first2=Paul A. |last3=Steffensen |first3=Jorgen P. |last4=West |first4=Allen |last5=Kennett |first5=Douglas J. |last6=Kennett |first6=James P. |last7=Bunch |first7=Ted E. |last8=Handley |first8=Mike |last9=Introne |first9=Douglas S. |last10=Hee |first10=Shane S. Que |last11=Mercer |first11=Christopher |last12=Sellers |first12=Marilee |last13=Shen |first13=Feng |last14=Sneed |first14=Sharon B. |last15=Weaver |first15=James C. |last16=Wittke |first16=James H. |last17=Stafford |first17=Thomas W. |last18=Donovan |first18=John J. |last19=Xie |first19=Sujing |last20=Razink |first20=Joshua J. |last21=Stich |first21=Adrienne |last22=Kinzie |first22=Charles R. |last23=Wolbach |first23=Wendy S. |title=Discovery of a nanodiamond-rich layer in the Greenland ice sheet |website=PubPeer |date=2022-09-20 |url=https://pubpeer.com/publications/28B83ADB820618B3F374667D5FBB92 |access-date=2022-09-28}} Its presence in local peat deposits is claimed as evidence for the Tunguska event being caused by a meteor rather than by a cometary fragment.
{{cite journal
|last1=Kvasnytsya |first1=Victor
|last2=Wirth |last3=Dobrzhinetskaya |last4=Matzel
|last5=Jacobsend |last6=Hutcheon |last7=Tappero
|last8=Kovalyukh
|date=August 2013
|title=New evidence of meteoritic origin of the Tunguska cosmic body
|journal=Planetary and Space Science
|volume=84 |pages=131–140
|doi=10.1016/j.pss.2013.05.003 |bibcode=2013P&SS...84..131K
|url=http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:247242
}}
{{cite news
|last=Redfern |first=Simon
|title=Russian meteor shockwave circled globe twice
|work=BBC News
|date=28 June 2013
|publisher=British Broadcasting Corporation
|url=https://www.bbc.co.uk/news/science-environment-23066055
|access-date=28 June 2013
}}
Manufacture
In addition to laboratory synthesis by compressing and heating graphite either in a static press or using explosives,
{{cite journal
|last1=Bundy |first1=F.P.
|last2=Kasper |first2=J.S.
|year=1967
|title=Hexagonal diamond — a new form of carbon
|journal=Journal of Chemical Physics
|volume=46 |issue=9 |page=3437
|doi=10.1063/1.1841236 |bibcode=1967JChPh..46.3437B
}}
{{cite journal
|last1=He |first1=Hongliang
|last2=Sekine |first2=T.
|last3=Kobayashi |first3=T.
|year=2002
|title=Direct transformation of cubic diamond to hexagonal diamond |journal=Applied Physics Letters
|volume=81 |issue=4 |page=610
|doi=10.1063/1.1495078 |bibcode=2002ApPhL..81..610H
}}
lonsdaleite has also been produced by chemical vapor deposition,
{{cite journal
|last1=Bhargava |first1=Sanjay |last2=Bist |first2=H.D.
|last3=Sahli |first3=S. |last4=Aslam |first4=M.
|last5=Tripathi |first5=H.B.
|year=1995
|title=Diamond polytypes in the chemical vapor deposited diamond films
|journal=Applied Physics Letters
|volume=67 |issue=12 |pages=1706
|doi=10.1063/1.115023 |bibcode=1995ApPhL..67.1706B
}}
{{cite journal
|last1=Nishitani-Gamo |first1=Mikka |last2=Sakaguchi |first2=Isao
|last3=Loh |first3=Kian Ping |last4=Kanda |first4=Hisao
|last5=Ando |first5=Toshihiro
|year=1998
|title=Confocal Raman spectroscopic observation of hexagonal diamond formation from dissolved carbon in nickel under chemical vapor deposition conditions
|journal=Applied Physics Letters
|volume=73 |issue=6 |pages=765
|doi=10.1063/1.121994 |bibcode=1998ApPhL..73..765N
}}
{{cite journal
|last1=Misra |first1=Abha |last2=Tyagi |first2=Pawan K.
|last3=Yadav |first3=Brajesh S. |last4=Rai |first4=P.
|last5=Misra |first5=D.S. |last6=Pancholi |first6=Vivek
|last7=Samajdar |first7=I.D.
|year=2006
|title=Hexagonal diamond synthesis on h-GaN strained films
|journal=Applied Physics Letters
|volume=89 |issue=7 |page=071911
|bibcode = 2006ApPhL..89g1911M |doi=10.1063/1.2218043}}
and also by the thermal decomposition of a polymer, poly(hydridocarbyne), at atmospheric pressure, under argon atmosphere, at {{convert|1000|°C|°F|0|abbr=on}}.
{{cite journal
|last1=Nur |first1=Yusuf
|last2=Pitcher |first2=Michael
|last3=Seyyidoğlu |first3=Semih
|last4=Toppare |first4=Levent
|year=2008
|title=Facile synthesis of poly(hydridocarbyne): A precursor to diamond and diamond-like ceramics
|journal=Journal of Macromolecular Science, Part A
|volume=45 |issue=5 |page=358
|s2cid=93635541 |doi=10.1080/10601320801946108
}}
{{cite journal
|last1=Nur |first1=Yusuf
|last2=Cengiz |first2=Halime M.
|last3=Pitcher |first3=Michael W.
|last4=Toppare |first4=Levent K.
|year=2009
|title=Electrochemical polymerizatıon of hexachloroethane to form poly(hydridocarbyne): A pre-ceramic polymer for diamond production
|journal=Journal of Materials Science
|volume=44 |issue=11 |pages=2774
|bibcode=2009JMatS..44.2774N |s2cid=97604277
|doi=10.1007/s10853-009-3364-4
}}
In 2020, researchers at Australian National University found by accident they were able to produce lonsdaleite at room temperatures using a diamond anvil cell.
{{cite web
|last=Lavars |first=Nick
|date=18 November 2020
|title=Scientists produce rare diamonds in minutes at room temperature
|website=New Atlas
|url=https://newatlas.com/materials/scientists-rare-diamonds-minutes-room-temperature/
|access-date=12 February 2021
}}
{{cite journal
|last1=McCulloch |first1=Dougal G. |last2=Wong |first2=Sherman
|last3=Shiell |first3=Thomas B. |last4=Haberl |first4=Bianca
|last5=Cook |first5=Brenton A. |last6=Huang |first6=Xingshuo
|last7=Boehler |first7=Reinhard |last8=McKenzie |first8=David R.
|last9=Bradby |first9=Jodie E.
|year=2020
|title=Investigation of room temperature formation of the ultra-hard nanocarbons diamond and lonsdaleite
|journal=Small
|volume=16 |issue=50 |pages=2004695
|doi=10.1002/smll.202004695 |pmid=33150739 |osti=1709105 |s2cid=226259491 |issn=1613-6829
|url=https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202004695
}}
In 2021, Washington State University's Institute for Shock Physics published a paper stating that they created lonsdaleite crystals large enough to measure their stiffness, confirming that they are stiffer than common cubic diamonds. However, the explosion used to create these crystals also destroys them nanoseconds later, providing just enough time to measure stiffness with lasers.
{{cite news
|title=Lab made hexagonal diamonds stiffer than natural cubic diamonds
|date=March 2021
|website=Phys.org
|url=https://phys.org/news/2021-03-lab-made-hexagonal-diamonds-stiffer-natural.html
}}
Scams
Since the characteristics of lonsdaleite are unknown to most people outside of scientists trained in geology and mineralogy, the names "lonsdaleite" and "hexagonal diamond" have frequently been used in the fraudulent sale of ceramic artifacts passed off as meteorites on online e-commerce sites and at street fairs and street markets, with prices ranging from a few dollars to thousands of dollars.{{Cite web |title=Mill balls and “lonsdaleite diamonds” {{!}} Some Meteorite Information {{!}} Washington University in St. Louis |url=https://sites.wustl.edu/meteoritesite/items/mill_balls/#:~:text=Lonsdaleite%20is%20an%20allotrope%20of,have%20a%20cubic%20crystal%20structure. |access-date=2024-10-06 |website=sites.wustl.edu}}
See also
- {{annotated link|Aggregated diamond nanorod}}
- {{annotated link|Glossary of meteoritics}}
- {{annotated link|List of minerals}}
- {{annotated link|List of minerals named after people}}
References
{{reflist|25em}}
Further reading
- {{cite book
|last=Anthony |first=J.W.
|date=1995
|title=Mineralogy of Arizona |edition=3rd
|location=Tucson, AZ
|publisher=University of Arizona Press
|isbn=0-8165-1579-4
}}
External links
- {{cite web
|title=Lonsdaleite
|website=Mindat.org
|url=http://www.mindat.org/min-2431.html
|access-date=13 March 2005
}}
- {{cite web
|title=Lonsdaleite
|website=Webmineral
|url=http://webmineral.com/data/Lonsdaleite.shtml
|access-date=13 March 2005
}}
- {{cite web
|title=The hexagonal diamond (lonsdaleite) structure
|department=Materials Science and Technology Division
|publisher=Naval Research Laboratory
|url=http://cst-www.nrl.navy.mil/lattice/struk/hexdia.html
|access-date=14 May 2006 |url-status=dead
|archive-url=https://web.archive.org/web/20060420005605/http://cst-www.nrl.navy.mil/lattice/struk/hexdia.html
|archive-date=2006-04-20
}}
- {{cite magazine
|first=Jessica |last=Griggs
|date=16 February 2009
|title=Diamond no longer nature's hardest material
|magazine=New Scientist
|url=https://www.newscientist.com/article/dn16610-diamond-no-longer-natures-hardest-material.html
|access-date=2021-05-09
}}
{{Allotropes of carbon}}
{{Meteorites}}
Category:Native element minerals