Loomis–Whitney inequality

{{Short description|Result in geometry}}

In mathematics, the Loomis–Whitney inequality is a result in geometry, which in its simplest form, allows one to estimate the "size" of a d-dimensional set by the sizes of its (d-1)-dimensional projections. The inequality has applications in incidence geometry, the study of so-called "lattice animals", and other areas.

The result is named after the American mathematicians Lynn Harold Loomis and Hassler Whitney, and was published in 1949.

Statement of the inequality

Fix a dimension d\ge 2 and consider the projections

:\pi_{j} : \mathbb{R}^{d} \to \mathbb{R}^{d - 1},

:\pi_{j} : x = (x_{1}, \dots, x_{d}) \mapsto \hat{x}_{j} = (x_{1}, \dots, x_{j - 1}, x_{j + 1}, \dots, x_{d}).

For each 1 ≤ jd, let

:g_{j} : \mathbb{R}^{d - 1} \to [0, + \infty),

:g_{j} \in L^{d - 1} (\mathbb{R}^{d -1}).

Then the Loomis–Whitney inequality holds:

:\left\|\prod_{j=1}^d g_j \circ \pi_j\right\|_{L^{1} (\mathbb{R}^{d })}

= \int_{\mathbb{R}^{d}} \prod_{j = 1}^{d} g_{j} ( \pi_{j} (x) ) \, \mathrm{d} x \leq \prod_{j = 1}^{d} \| g_{j} \|_{L^{d - 1} (\mathbb{R}^{d - 1})}.

Equivalently, taking f_{j} (x) = g_{j} (x)^{d - 1}, we have

:f_{j} : \mathbb{R}^{d - 1} \to [0, + \infty),

:f_{j} \in L^{1} (\mathbb{R}^{d -1})

implying

:\int_{\mathbb{R}^{d}} \prod_{j = 1}^{d} f_{j} ( \pi_{j} (x) )^{1 / (d - 1)} \, \mathrm{d} x \leq \prod_{j = 1}^{d} \left( \int_{\mathbb{R}^{d - 1}} f_{j} (\hat{x}_{j}) \, \mathrm{d} \hat{x}_{j} \right)^{1 / (d - 1)}.

A special case

The Loomis–Whitney inequality can be used to relate the Lebesgue measure of a subset of Euclidean space \mathbb{R}^{d} to its "average widths" in the coordinate directions. This is in fact the original version published by Loomis and Whitney in 1949 (the above is a generalization).{{Cite journal |last1=Loomis |first1=L. H. |last2=Whitney |first2=H. |date=1949 |title=An inequality related to the isoperimetric inequality |url=https://www.ams.org/bull/1949-55-10/S0002-9904-1949-09320-5/ |journal=Bulletin of the American Mathematical Society |language=en |volume=55 |issue=10 |pages=961–962 |doi=10.1090/S0002-9904-1949-09320-5 |issn=0273-0979|doi-access=free }}

Let E be some measurable subset of \mathbb{R}^{d} and let

:f_{j} = \mathbf{1}_{\pi_{j} (E)}

be the indicator function of the projection of E onto the jth coordinate hyperplane. It follows that for any point x in E,

:\prod_{j = 1}^{d} f_{j} (\pi_{j} (x))^{1 / (d - 1)} = \prod_{j = 1}^{d} 1 = 1.

Hence, by the Loomis–Whitney inequality,

:\int_{\mathbb{R}^{d}} \mathbf 1_E(x) \, \mathrm{d} x = | E | \leq \prod_{j = 1}^{d} | \pi_{j} (E) |^{1 / (d - 1)},

and hence

:| E | \geq \prod_{j = 1}^{d} \frac

E
\pi_{j} (E)
.

The quantity

:\frac

E
\pi_{j} (E)

can be thought of as the average width of E in the jth coordinate direction. This interpretation of the Loomis–Whitney inequality also holds if we consider a finite subset of Euclidean space and replace Lebesgue measure by counting measure.

The following proof is the original one

{{Math proof|title=Proof|proof=

Overview: We prove it for unions of unit cubes on the integer grid, then take the continuum limit. When d=1, 2, it is obvious. Now induct on d+1. The only trick is to use Hölder's inequality for counting measures.

Enumerate the dimensions of \R^{d+1} as 0, 1, ..., d.

Given N unit cubes on the integer grid in \R^{d+1}, with their union being T, we project them to the 0-th coordinate. Each unit cube projects to an integer unit interval on \R. Now define the following:

  • I_1, ..., I_k enumerate all such integer unit intervals on the 0-th coordinate.
  • Let T_i be the set of all unit cubes that projects to I_i.
  • Let N_j be the area of \pi_j(T), with j = 0, 1, ..., d.
  • Let a_i be the volume of T_i. We have \sum_i a_i = N, and a_i \leq N_0.
  • Let T_{ij} be \pi_j(T_i) for all j = 1, ..., d.
  • Let a_{ij} be the area of T_{ij}. We have \sum_i a_{ij} = N_j.

By induction on each slice of T_i, we have a_i^{d-1}\leq \prod_{j=1}^d a_{ij}

Multiplying by a_i \leq N_0, we have a_i^{d}\leq N_0\prod_{j=1}^d a_{ij}

Thus

N = \sum_i a_i \leq \sum_i N_0^{1/d} \prod_{j=1}^d a_{ij}^{1/d} = N_0^{1/d} \sum_{i=1}^k\prod_{j=1}^d a_{ij}^{1/d}

Now, the sum-product can be written as an integral over counting measure, allowing us to perform Holder's inequality:

\sum_{i=1}^k\prod_{j=1}^d a_{ij}^{1/d} = \int_i \prod_{j=1}^d a_{ij}^{1/d} = \left\|\prod_{j=1}^d a_{\cdot, j}^{1/d}\right\|_1 \leq \prod_j \|a_{\cdot, j}^{1/d}\|_d=\prod_{j=1}^d \left(\sum_{i=1}^k a_{ij}\right)^{1/d}

Plugging in \sum_i a_{ij} = N_j, we get N^d \leq \prod_{j=0}^d N_j

}}

Corollary. Since 2 |\pi_j(E)| \leq |\partial E|, we get a loose isoperimetric inequality:

|E|^{d-1}\leq 2^{-d}|\partial E|^dIterating the theorem yields | E | \leq \prod_{1 \leq j < k \leq d} | \pi_{j}\circ \pi_k (E) |^{\binom{d-1}{2}^{-1}} and more generally{{Cite book |last1=Burago |first1=Yurii D. |url=https://books.google.com/books?id=Gpz6CAAAQBAJ&pg=PA1 |title=Geometric Inequalities |last2=Zalgaller |first2=Viktor A. |date=2013-03-14 |publisher=Springer Science & Business Media |isbn=978-3-662-07441-1 |pages=95 |language=en}}| E | \leq \prod_j | \pi_{j} (E) |^{\binom{d-1}{k}^{-1}}where \pi_j enumerates over all projections of \R^d to its d-k dimensional subspaces.

Generalizations

The Loomis–Whitney inequality is a special case of the Brascamp–Lieb inequality, in which the projections πj above are replaced by more general linear maps, not necessarily all mapping onto spaces of the same dimension.

References

{{reflist}}

Sources

  • {{cite book|mr=3524748|last1=Alon|first1=Noga|last2=Spencer|first2=Joel H.|title=The probabilistic method|edition=Fourth edition of 1992 original|series=Wiley Series in Discrete Mathematics and Optimization|publisher=John Wiley & Sons, Inc.|location=Hoboken, NJ|year=2016|isbn=978-1-119-06195-3|author-link1=Noga Alon|author-link2=Joel H. Spencer|zbl=1333.05001}}
  • {{cite book|mr=3185193|last1=Boucheron|first1=Stéphane|last2=Lugosi|first2=Gábor|last3=Massart|first3=Pascal|author-link3=Pascal Massart|title=Concentration inequalities. A nonasymptotic theory of independence|publisher=Oxford University Press|location=Oxford|year=2013|isbn=978-0-19-953525-5|zbl=1279.60005|doi=10.1093/acprof:oso/9780199535255.001.0001}}
  • {{cite book|mr=0936419|last1=Burago|first1=Yu. D.|last2=Zalgaller|first2=V. A.|title=Geometric inequalities|translator-first1=A. B.|translator-last1=Sosinskiĭ|series=Grundlehren der mathematischen Wissenschaften|volume=285|publisher=Springer-Verlag|location=Berlin|year=1988|isbn=3-540-13615-0|author-link1=Yuri Burago|author-link2=Victor Zalgaller|doi=10.1007/978-3-662-07441-1|zbl=0633.53002}}
  • {{cite book|mr=0102775|last1=Hadwiger|first1=H.|title=Vorlesungen über Inhalt, Oberfläche und Isoperimetrie|publisher=Springer-Verlag|location=Berlin–Göttingen–Heidelberg|year=1957|zbl=0078.35703|isbn=3-642-94702-6|series=Grundlehren der mathematischen Wissenschaften|volume=93|doi=10.1007/978-3-642-94702-5|author-link1=Hugo Hadwiger}}
  • {{cite journal

| last1 = Loomis

| first1 = L. H.

|authorlink1=Lynn Harold Loomis

|last2=Whitney

|first2=H.

|authorlink2=Hassler Whitney

| title = An inequality related to the isoperimetric inequality

| journal = Bulletin of the American Mathematical Society

| volume = 55

| issue = 10

| year = 1949

| pages = 961–962

| doi = 10.1090/S0002-9904-1949-09320-5

| doi-access = free

|mr=0031538

|zbl=0035.38302

}}

{{DEFAULTSORT:Loomis-Whitney inequality}}

Category:Incidence geometry

Category:Geometric inequalities