Lucas number#Lucas primes
{{short description|Infinite integer series where the next number is the sum of the two preceding it}}
{{distinguish|text=Lucas sequences, the general class of sequences to which the Lucas numbers belong}}
{{More footnotes|date=December 2019}}
File:Lucas number spiral.svg, is a good approximation of the golden spiral when its terms are large. However, when its terms become very small, the arc's radius decreases rapidly from 3 to 1 then increases from 1 to 2.]]
The Lucas sequence is an integer sequence named after the mathematician François Édouard Anatole Lucas (1842–1891), who studied both that sequence and the closely related Fibonacci sequence. Individual numbers in the Lucas sequence are known as Lucas numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.
The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values.{{Cite web|last=Weisstein|first=Eric W.|title=Lucas Number|url=https://mathworld.wolfram.com/LucasNumber.html|access-date=2020-08-11|website=mathworld.wolfram.com|language=en}} This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ratio.{{cite book |last1=Parker |first1=Matt |title=Things to Make and Do in the Fourth Dimension |date=2014 |publisher=Farrar, Straus and Giroux |isbn=978-0-374-53563-6 |page=284 |language=English |chapter=13}} The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between.{{cite book |last1=Parker |first1=Matt |title=Things to Make and Do in the Fourth Dimension |date=2014 |publisher=Farrar, Straus and Giroux |isbn=978-0-374-53563-6 |page=282 |language=English |chapter=13}}
The first few Lucas numbers are
: 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, ... . {{OEIS|id=A000032}}
which coincides for example with the number of independent vertex sets for cyclic graphs of length .
Definition
As with the Fibonacci numbers, each Lucas number is defined to be the sum of its two immediately previous terms, thereby forming a Fibonacci integer sequence. The first two Lucas numbers are and , which differs from the first two Fibonacci numbers and . Though closely related in definition, Lucas and Fibonacci numbers exhibit distinct properties.
The Lucas numbers may thus be defined as follows:
:
L_n :=
\begin{cases}
2 & \text{if } n = 0; \\
1 & \text{if } n = 1; \\
L_{n-1}+L_{n-2} & \text{if } n > 1.
\end{cases}
(where n belongs to the natural numbers)
All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to the golden ratio.
Extension to negative integers
Using , one can extend the Lucas numbers to negative integers to obtain a doubly infinite sequence:
:..., −11, 7, −4, 3, −1, 2, 1, 3, 4, 7, 11, ... (terms for are shown).
The formula for terms with negative indices in this sequence is
:
Relationship to Fibonacci numbers
File:Comparison_Fibonacci_and_Lucas_numbers.svg
The Lucas numbers are related to the Fibonacci numbers by many identities. Among these are the following:
- , so .
- ; in particular, , so .
Their closed formula is given as:
:
where is the golden ratio. Alternatively, as for the magnitude of the term is less than 1/2, is the closest integer to or, equivalently, the integer part of , also written as .
Combining the above with Binet's formula,
:
a formula for is obtained:
:
For integers n ≥ 2, we also get:
:
with remainder R satisfying
:.
Lucas identities
Many of the Fibonacci identities have parallels in Lucas numbers. For example, the Cassini identity becomes
:
Also
:
:
:
where .
:
where except for .
For example if n is odd, and
Checking, , and
Generating function
Let
:
be the generating function of the Lucas numbers. By a direct computation,
:
\Phi(x) &= L_0 + L_1x + \sum_{n = 2}^\infty L_nx^n \\
&= 2 + x + \sum_{n = 2}^\infty (L_{n - 1} + L_{n - 2})x^n \\
&= 2 + x + \sum_{n = 1}^\infty L_nx^{n + 1} + \sum_{n = 0}^\infty L_nx^{n + 2} \\
&= 2 + x + x(\Phi(x) - 2) + x^2 \Phi(x)
\end{align}
which can be rearranged as
:
gives the generating function for the negative indexed Lucas numbers, , and
:
satisfies the functional equation
:
As the generating function for the Fibonacci numbers is given by
:
we have
:
which proves that
:
and
:
proves that
:
The partial fraction decomposition is given by
:
where is the golden ratio and is its conjugate.
This can be used to prove the generating function, as
:
Congruence relations
If is a Fibonacci number then no Lucas number is divisible by .
The Lucas numbers satisfy Gauss congruence. This implies that is congruent to 1 modulo if is prime. The composite values of which satisfy this property are known as Fibonacci pseudoprimes.
is congruent to 0 modulo 5.
Lucas primes
A Lucas prime is a Lucas number that is prime. The first few Lucas primes are
:2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ... {{OEIS|id=A005479}}.
The indices of these primes are (for example, L4 = 7)
:0, 2, 4, 5, 7, 8, 11, 13, 16, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 113, 313, 353, 503, 613, 617, 863, 1097, 1361, 4787, 4793, 5851, 7741, 8467, ... {{OEIS|id=A001606}}.
{{as of|2015|09}}, the largest confirmed Lucas prime is L148091, which has 30950 decimal digits.{{cite web |title=The Top Twenty: Lucas Number |url=https://primes.utm.edu/top20/page.php?id=48 |website=primes.utm.edu |access-date=6 January 2022}} {{as of|2022|08}}, the largest known Lucas probable prime is L5466311, with 1,142,392 decimal digits.{{cite web |title=Henri & Renaud Lifchitz's PRP Top - Search by form |url=http://www.primenumbers.net/prptop/searchform.php?form=L%28n%29&action=Search |website=www.primenumbers.net |access-date=6 January 2022}}
If Ln is prime then n is 0, prime, or a power of 2.Chris Caldwell, "[http://primes.utm.edu/glossary/page.php?sort=LucasPrime The Prime Glossary: Lucas prime]" from The Prime Pages. L2m is prime for m = 1, 2, 3, and 4 and no other known values of m.
Lucas polynomials
In the same way as Fibonacci polynomials are derived from the Fibonacci numbers, the Lucas polynomials are a polynomial sequence derived from the Lucas numbers.
Continued fractions for powers of the golden ratio
Close rational approximations for powers of the golden ratio can be obtained from their continued fractions.
For positive integers n, the continued fractions are:
:
:.
For example:
:
is the limit of
:
with the error in each term being about 1% of the error in the previous term; and
:
is the limit of
:
with the error in each term being about 0.3% that of the second previous term.
Applications
Lucas numbers are the second most common pattern in sunflowers after Fibonacci numbers, when clockwise and counter-clockwise spirals are counted, according to an analysis of 657 sunflowers in 2016.{{Cite journal |last1=Swinton |first1=Jonathan |last2=Ochu |first2=Erinma |last3=null |first3=null |title=Novel Fibonacci and non-Fibonacci structure in the sunflower: results of a citizen science experiment |journal=Royal Society Open Science |year=2016 |volume=3 |issue=5 |pages=160091 |doi=10.1098/rsos.160091 |pmc=4892450 |pmid=27293788|bibcode=2016RSOS....360091S }}
See also
References
{{reflist}}
External links
- {{springer|title=Lucas polynomials|id=p/l130120}}
- {{MathWorld|urlname=LucasNumber|title=Lucas Number}}
- {{MathWorld | urlname=LucasPolynomial | title=Lucas Polynomial}}
- "[https://web.archive.org/web/20051126021243/http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/lucasNbs.html The Lucas Numbers]", Dr Ron Knott
- [https://web.archive.org/web/20051030021553/http://milan.milanovic.org/math/english/lucas/lucas.html Lucas numbers and the Golden Section]
- [https://web.archive.org/web/20070216024906/http://www.plenilune.pwp.blueyonder.co.uk/fibonacci-calculator.asp A Lucas Number Calculator can be found here.]
- {{OEIS el|1=A000032|2=Lucas numbers beginning at 2|formalname=Lucas numbers beginning at 2: L(n) = L(n-1) + L(n-2), L(0) = 2, L(1) = 1}}
{{Prime number classes}}
{{Classes of natural numbers}}
{{series (mathematics)}}
Category:Eponymous numbers in mathematics