MAPK12
{{Short description|Protein-coding gene in the species Homo sapiens}}
{{Infobox_gene}}
Mitogen-activated protein kinase 12 (MAP kinase 12), also known as extracellular signal-regulated kinase 6 (ERK6) or stress-activated protein kinase 3 (SAPK3), is an enzyme that in humans is encoded by the MAPK12 gene.{{cite web | title = Entrez Gene: mitogen-activated protein kinase 12| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6300}}
Function
Activation of members of the mitogen-activated protein kinase family is a major mechanism for transduction of extracellular signals. Stress-activated protein kinases are one subclass of MAP kinases. The protein encoded by this gene functions as a signal transducer during differentiation of myoblasts to myotubes.
References
{{reflist}}
Further reading
{{refbegin | 2}}
- {{cite journal |vauthors=Stiffler MA, Grantcharova VP, Sevecka M, MacBeath G |title=Uncovering quantitative protein interaction networks for mouse PDZ domains using protein microarrays. |journal=J. Am. Chem. Soc. |volume=128 |issue= 17 |pages= 5913–22 |year= 2006 |pmid= 16637659 |doi= 10.1021/ja060943h |pmc=2533859}}
- {{cite journal |vauthors=Joneson T, Bar-Sagi D |title=Ras effectors and their role in mitogenesis and oncogenesis. |journal=J. Mol. Med. |volume=75 |issue= 8 |pages= 587–93 |year= 1997 |pmid= 9297626 |doi= 10.1007/s001090050143|s2cid=23541383 }}
- {{cite journal |vauthors=Hou SW, Zhi HY, Pohl N, etal |title=PTPH1 dephosphorylates and cooperates with p38gamma MAPK to increase ras oncogenesis through PDZ-mediated interaction. |journal=Cancer Res. |volume=70 |issue= 7 |pages= 2901–10 |year= 2010 |pmid= 20332238 |doi= 10.1158/0008-5472.CAN-09-3229 |pmc=2848905}}
- {{cite journal |vauthors=Gutierrez-Sanmartin D, Varela-Ledo E, Aguilera A, etal |title=Implication of p38 mitogen-activated protein kinase isoforms (alpha, beta, gamma and delta) in CD4+ T-cell infection with human immunodeficiency virus type I. |journal=J. Gen. Virol. |volume=89 |issue= Pt 7 |pages= 1661–71 |year= 2008 |pmid= 18559936 |doi= 10.1099/vir.0.82971-0 |doi-access= free }}
- {{cite journal |vauthors=Sabio G, Cerezo-Guisado MI, Del Reino P, etal |title=p38gamma regulates interaction of nuclear PSF and RNA with the tumour-suppressor hDlg in response to osmotic shock. |journal=J. Cell Sci. |volume=123 |issue= Pt 15 |pages= 2596–604 |year= 2010 |pmid= 20605917 |doi= 10.1242/jcs.066514 |pmc=2908048}}
- {{cite journal |vauthors=Zhang J, Harrison JS, Studzinski GP |title=Isoforms of p38MAPK gamma and delta contribute to differentiation of human AML cells induced by 1,25-dihydroxyvitamin D₃. |journal=Exp. Cell Res. |volume=317 |issue= 1 |pages= 117–30 |year= 2011 |pmid= 20804750 |doi= 10.1016/j.yexcr.2010.08.010 |pmc=2998239}}
- {{cite journal |vauthors=Kwong J, Hong L, Liao R, etal |title=p38alpha and p38gamma mediate oncogenic ras-induced senescence through differential mechanisms. |journal=J. Biol. Chem. |volume=284 |issue= 17 |pages= 11237–46 |year= 2009 |pmid= 19251701 |doi= 10.1074/jbc.M808327200 |pmc=2670128|doi-access=free }}
- {{cite journal |vauthors=Morishima-Kawashima M, Hasegawa M, Takio K, etal |title=Hyperphosphorylation of tau in PHF. |journal=Neurobiol. Aging |volume=16 |issue= 3 |pages= 365–71; discussion 371–80 |year= 1995|pmid= 7566346 |doi= 10.1016/0197-4580(95)00027-C|s2cid=22471158 }}
- {{cite journal |vauthors=Diskin R, Askari N, Capone R, etal |title=Active mutants of the human p38alpha mitogen-activated protein kinase. |journal=J. Biol. Chem. |volume=279 |issue= 45 |pages= 47040–9 |year= 2004 |pmid= 15284239 |doi= 10.1074/jbc.M404595200 |doi-access= free }}
- {{cite journal |vauthors=Askari N, Diskin R, Avitzour M, etal |title=Hyperactive variants of p38alpha induce, whereas hyperactive variants of p38gamma suppress, activating protein 1-mediated transcription. |journal=J. Biol. Chem. |volume=282 |issue= 1 |pages= 91–9 |year= 2007 |pmid= 17088247 |doi= 10.1074/jbc.M608012200 |doi-access= free }}
- {{cite journal |vauthors=Krauss RS, Cole F, Gaio U, etal |title=Close encounters: regulation of vertebrate skeletal myogenesis by cell-cell contact. |journal=J. Cell Sci. |volume=118 |issue= Pt 11 |pages= 2355–62 |year= 2005 |pmid= 15923648 |doi= 10.1242/jcs.02397 |doi-access= free }}
- {{cite journal |vauthors=Talmud PJ, Drenos F, Shah S, etal |title=Gene-centric association signals for lipids and apolipoproteins identified via the HumanCVD BeadChip. |journal=Am. J. Hum. Genet. |volume=85 |issue= 5 |pages= 628–42 |year= 2009 |pmid= 19913121 |doi= 10.1016/j.ajhg.2009.10.014 |pmc=2775832}}
- {{cite journal |vauthors=Olsen JV, Blagoev B, Gnad F, etal |title=Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. |journal=Cell |volume=127 |issue= 3 |pages= 635–48 |year= 2006 |pmid= 17081983 |doi= 10.1016/j.cell.2006.09.026 |doi-access= free }}
- {{cite journal |vauthors=Tosti E, Waldbaum L, Warshaw G, etal |title=The stress kinase MRK contributes to regulation of DNA damage checkpoints through a p38gamma-independent pathway. |journal=J. Biol. Chem. |volume=279 |issue= 46 |pages= 47652–60 |year= 2004 |pmid= 15342622 |doi= 10.1074/jbc.M409961200 |doi-access= free}}
- {{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 |pmc=528928}}
- {{cite journal |vauthors=Qi X, Pohl NM, Loesch M, etal |title=p38alpha antagonizes p38gamma activity through c-Jun-dependent ubiquitin-proteasome pathways in regulating Ras transformation and stress response. |journal=J. Biol. Chem. |volume=282 |issue= 43 |pages= 31398–408 |year= 2007 |pmid= 17724032 |doi= 10.1074/jbc.M703857200 |doi-access= free }}
- {{cite journal |vauthors=Collins JE, Wright CL, Edwards CA, etal |title=A genome annotation-driven approach to cloning the human ORFeome. |journal=Genome Biol. |volume=5 |issue= 10 |pages= R84 |year= 2004 |pmid= 15461802 |doi= 10.1186/gb-2004-5-10-r84 |pmc=545604 |doi-access=free }}
- {{cite journal |vauthors=Kukkonen-Macchi A, Sicora O, Kaczynska K, etal |title=Loss of p38gamma MAPK induces pleiotropic mitotic defects and massive cell death. |journal=J. Cell Sci. |volume=124 |issue= Pt 2 |pages= 216–27 |year= 2011 |pmid= 21172807 |doi= 10.1242/jcs.068254 |s2cid=4909652 |doi-access= }}
- {{cite journal|author3-link=William C. Mobley |vauthors=Sofroniew MV, Howe CL, Mobley WC |title=Nerve growth factor signaling, neuroprotection, and neural repair. |journal=Annu. Rev. Neurosci. |volume=24 |pages= 1217–81 |year= 2001 |pmid= 11520933 |doi= 10.1146/annurev.neuro.24.1.1217 }}
- {{cite journal |vauthors=Bailey SD, Xie C, Do R, etal |title=Variation at the NFATC2 locus increases the risk of thiazolidinedione-induced edema in the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) study. |journal=Diabetes Care |volume=33 |issue= 10 |pages= 2250–3 |year= 2010 |pmid= 20628086 |doi= 10.2337/dc10-0452 |pmc=2945168}}
{{refend}}
{{PDB Gallery|geneid=6300}}
{{Serine/threonine-specific protein kinases|g2}}
{{Enzymes}}
{{Portal bar|Biology|border=no}}
{{NLM content}}
{{gene-22-stub}}