MGAT4B

{{Short description|Gene in humans}}

{{Infobox_gene}}

Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase B is an enzyme that in humans is encoded by the MGAT4B gene.{{cite journal |vauthors=Yoshida A, Minowa MT, Takamatsu S, Hara T, Ikenaga H, Takeuchi M | title = A novel second isoenzyme of the human UDP-N-acetylglucosamine:alpha1,3-D-mannoside beta1,4-N-acetylglucosaminyltransferase family: cDNA cloning, expression, and chromosomal assignment | journal = Glycoconj J | volume = 15 | issue = 12 | pages = 1115–23 |date=Jul 1999 | pmid = 10372966 | doi =10.1023/A:1006951519522 | s2cid = 31297495 }}{{cite web | title = Entrez Gene: MGAT4B mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-acetylglucosaminyltransferase, isozyme B| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=11282}}

This gene encodes a key glycosyltransferase that regulates the formation of tri- and multiantennary branching structures in the Golgi apparatus. The encoded protein, in addition to the related isoenzyme A, catalyzes the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc in a beta-1,4 linkage to the Man-alpha-1,3-Man-beta-1,4-GlcNAc arm of R-Man-alpha-1,6(GlcNAc-beta-1,2-Man-alpha-1,3)Man-beta-1,4-GlcNAc-beta-1,4-GlcNAc-beta-1-Asn. Therefore, the protein is essential for the production of tri- and tetra-antennary sugar chains. The encoded protein may play a role in regulating the availability of serum glycoproteins, oncogenesis, and differentiation. Its affinities for donors of acceptors are lower than that of MGAT4A so it is suggested that it is not the main contributor in N-glycan biosynthesis.{{UniProt|Q9UQ53|name="Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase B"}}

References

{{reflist}}

Further reading

{{refbegin | 2}}

  • {{cite journal |vauthors=Land A, Braakman I |title=Folding of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum. |journal=Biochimie |volume=83 |issue= 8 |pages= 783–90 |year= 2001 |pmid= 11530211 |doi=10.1016/S0300-9084(01)01314-1 |hdl=1874/5091 |s2cid=13576808 |hdl-access=free }}
  • {{cite journal |vauthors=Dedera DA, Gu RL, Ratner L |title=Role of asparagine-linked glycosylation in human immunodeficiency virus type 1 transmembrane envelope function. |journal=Virology |volume=187 |issue= 1 |pages= 377–82 |year= 1992 |pmid= 1736542 |doi=10.1016/0042-6822(92)90331-I }}
  • {{cite journal |vauthors=Kalyanaraman VS, Rodriguez V, Veronese F, etal |title=Characterization of the secreted, native gp120 and gp160 of the human immunodeficiency virus type 1. |journal=AIDS Res. Hum. Retroviruses |volume=6 |issue= 3 |pages= 371–80 |year= 1990 |pmid= 2187500 |doi=10.1089/aid.1990.6.371 |url=https://zenodo.org/record/1235229 }}
  • {{cite journal |vauthors=Pal R, Hoke GM, Sarngadharan MG |title=Role of oligosaccharides in the processing and maturation of envelope glycoproteins of human immunodeficiency virus type 1. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=86 |issue= 9 |pages= 3384–8 |year= 1989 |pmid= 2541446 |doi=10.1073/pnas.86.9.3384 | pmc=287137 |bibcode=1989PNAS...86.3384P |doi-access=free }}
  • {{cite journal |vauthors=Dewar RL, Vasudevachari MB, Natarajan V, Salzman NP |title=Biosynthesis and processing of human immunodeficiency virus type 1 envelope glycoproteins: effects of monensin on glycosylation and transport. |journal=J. Virol. |volume=63 |issue= 6 |pages= 2452–6 |year= 1989 |pmid= 2542563 |doi= 10.1128/jvi.63.6.2452-2456.1989| pmc=250699 }}
  • {{cite journal |vauthors=Kozarsky K, Penman M, Basiripour L, etal |title=Glycosylation and processing of the human immunodeficiency virus type 1 envelope protein. |journal=J. Acquir. Immune Defic. Syndr. |volume=2 |issue= 2 |pages= 163–9 |year= 1989 |pmid= 2649653 }}
  • {{cite journal |vauthors=Robinson WE, Montefiori DC, Mitchell WM |title=Evidence that mannosyl residues are involved in human immunodeficiency virus type 1 (HIV-1) pathogenesis. |journal=AIDS Res. Hum. Retroviruses |volume=3 |issue= 3 |pages= 265–82 |year= 1988 |pmid= 2829950 |doi=10.1089/aid.1987.3.265 }}
  • {{cite journal |vauthors=Blough HA, Pauwels R, De Clercq E, etal |title=Glycosylation inhibitors block the expression of LAV/HTLV-III (HIV) glycoproteins. |journal=Biochem. Biophys. Res. Commun. |volume=141 |issue= 1 |pages= 33–8 |year= 1987 |pmid= 3099781 |doi=10.1016/S0006-291X(86)80330-8 }}
  • {{cite journal |vauthors=Montefiori DC, Robinson WE, Mitchell WM |title=Role of protein N-glycosylation in pathogenesis of human immunodeficiency virus type 1. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=85 |issue= 23 |pages= 9248–52 |year= 1988 |pmid= 3264072 |doi=10.1073/pnas.85.23.9248 | pmc=282716 |bibcode=1988PNAS...85.9248M |doi-access=free }}
  • {{cite journal |vauthors=Fenouillet E, Jones I, Powell B, etal |title=Functional role of the glycan cluster of the human immunodeficiency virus type 1 transmembrane glycoprotein (gp41) ectodomain. |journal=J. Virol. |volume=67 |issue= 1 |pages= 150–60 |year= 1993 |pmid= 8093218 |doi= 10.1128/jvi.67.1.150-160.1993| pmc=237347 }}
  • {{cite journal |vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }}
  • {{cite journal |vauthors=Bolmstedt A, Sjölander S, Hansen JE, etal |title=Influence of N-linked glycans in V4-V5 region of human immunodeficiency virus type 1 glycoprotein gp160 on induction of a virus-neutralizing humoral response |journal=J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. |volume=12 |issue= 3 |pages= 213–20 |year= 1996 |pmid= 8673525 |doi= 10.1097/00042560-199607000-00001|doi-access=free }}
  • {{cite journal |vauthors=Papandreou MJ, Fenouillet E |title=Effect of various glycosidase treatments on the resistance of the HIV-1 envelope to degradation |journal=FEBS Lett. |volume=406 |issue= 1–2 |pages= 191–5 |year= 1997 |pmid= 9109416 |doi=10.1016/S0014-5793(97)00273-1 |s2cid=17660 |doi-access=free }}
  • {{cite journal |vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, etal |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 }}
  • {{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |bibcode=2002PNAS...9916899M |doi-access=free }}
  • {{cite journal |vauthors=Clark HF, Gurney AL, Abaya E, etal |title=The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment |journal=Genome Res. |volume=13 |issue= 10 |pages= 2265–70 |year= 2003 |pmid= 12975309 |doi= 10.1101/gr.1293003 | pmc=403697 }}
  • {{cite journal |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |doi-access= free }}
  • {{cite journal |vauthors=Brandenberger R, Wei H, Zhang S, etal |title=Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation |journal=Nat. Biotechnol. |volume=22 |issue= 6 |pages= 707–16 |year= 2005 |pmid= 15146197 |doi= 10.1038/nbt971 |s2cid=27764390 }}

{{refend}}

{{gene-5-stub}}