MIL-53

{{Short description|Chemical compound}}

File:MIL-53ht.png

MIL-53 (MIL ⇒ Matériaux de l′Institut Lavoisier) belongs to the class of metal-organic framework (MOF) materials. The first synthesis and the name was established by the group of Gérard Férey in 2002. The MIL-53 structure consists of inorganic [M-OH] chains, which are connected to four neighboring inorganic chains by therephthalate-based linker molecules. Each metal center is octahedrally coordinated by six oxygen atoms. Four of these oxygen atoms originate from four different carboxylate groups and the remaining two oxygen atoms belong to two different μ-OH moieties, which bridge neighboring metal centers. The resulting framework structure contains one-dimensional diamond-shaped pores. Many research group have investigated the flexibility of the MIL-53 structure. This flexible behavior, during which the pore cross-section changes reversibly, was termed 'breathing effect' and describes the ability of the MIL-53 framework to respond to external stimuli.{{Cite journal|last1=Millange|first1=Franck|last2=Walton|first2=Richard I.|date=2018-09-03|title=MIL-53 and its Isoreticular Analogues: a Review of the Chemistry and Structure of a Prototypical Flexible Metal-Organic Framework|journal=Israel Journal of Chemistry|language=en|volume=58|issue=9–10|pages=1019–1035|doi=10.1002/ijch.201800084|s2cid=105480508 }}

Structural Analogs

=Monometallic single-linker MIL-53 analogs=

MIL-53(Cr) was the first reported member of the MIL-53 family and is built up from Cr3+ as metal center and terephthalate (benzene-1,4-dicarboxylate) as linker molecules. Based on the toolbox-like design of metal-organic framework materials, different metal centers or linker molecules can be used for the synthesis of other members of the MIL-53 family. Trivalent (M3+) metal centers are mainly used, but materials with divalent (M2+) or tetravalent (M4+) metals have also been published.

class="wikitable"

|+Overview of reported MIL-53(M) materials

!Name

!Metal center and

oxidation state

!Year of

publication

!Alternative

name

!Reference

rowspan="2" |MIL-53(V)

|V3+

| rowspan="2" |2002

| rowspan="2" |MIL-47

| rowspan="2" |{{citation|surname1=Karin Barthelet, Jérôme Marrot, Didier Riou, Gérard Férey|periodical=Angewandte Chemie International Edition|title=A Breathing Hybrid Organic–Inorganic Solid with Very Large Pores and High Magnetic Characteristics|volume=41|issue=2|at=pp. 281–284|issn=1521-3773|date=2002|language=German|doi=10.1002/1521-3773(20020118)41:2<281::AID-ANIE281>3.0.CO;2-Y|pmid=12491409 }}{{citation|surname1=Hervé Leclerc, Thomas Devic, Sabine Devautour-Vinot, Philippe Bazin, Nathalie Audebrand|periodical=The Journal of Physical Chemistry C|title=Influence of the Oxidation State of the Metal Center on the Flexibility and Adsorption Properties of a Porous Metal Organic Framework: MIL-47(V)|volume=115|issue=40|at=pp. 19828–19840|issn=1932-7447|date=2011-10-13|language=German|doi=10.1021/jp206655y}}

V4+
MIL-53(Cr)

|Cr3+

|2002

|

|C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër, and G. Férey: Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x·H2Oy. In: J. Am. Chem. Soc. 2002, 124, 45, S. 13519–13526, {{doi|10.1021/ja0276974}}.{{citation|title=Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first Criii hybrid inorganic–organic microporous solids: Criii(OH)·{O2C–C6H4–CO2}·{HO2C–C6H4–CO2H}xElectronic supplementary information (ESI) available: crystal data, atomic coordinates and metrical parameters for MIL-53as and MIL-53ht.|date=2002-04-11|url=http://xlink.rsc.org/?DOI=b201381a|volume=|issue=8|periodical=Chemical Communications|at=pp. 822–823|language=German|doi=10.1039/b201381a|surname1=Franck Millange, Christian Serre, Gérard Férey|pmid=12132491|url-access=subscription}}

MIL-53(Al)

|Al3+

|2004

|

|{{Cite journal|last1=Loiseau|first1=Thierry|last2=Serre|first2=Christian|last3=Huguenard|first3=Clarisse|last4=Fink|first4=Gerhard|last5=Taulelle|first5=Francis|last6=Henry|first6=Marc|last7=Bataille|first7=Thierry|last8=Férey|first8=Gérard|date=2004-03-19|title=A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration|journal=Chemistry - A European Journal|language=en|volume=10|issue=6|pages=1373–1382|doi=10.1002/chem.200305413|pmid=15034882|issn=0947-6539}}

rowspan="2" |MIL-53(Fe)

|Fe3+

|2005

|

|{{citation|surname1=Tabatha R. Whitfield, Xiqu Wang, Lumei Liu, Allan J. Jacobson|periodical=Solid State Sciences|title=Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions|volume=7|issue=9|at=pp. 1096–1103|date=September 2005|language=German|doi=10.1016/j.solidstatesciences.2005.03.007|bibcode=2005SSSci...7.1096W}}

Fe2+

|2005

|

|

MIL-53(In)

|In3+

|2005

|

|{{citation|surname1=Ekaterina V. Anokhina, Marie Vougo-Zanda, Xiqu Wang, Allan J. Jacobson|periodical=Journal of the American Chemical Society|title=In(OH)BDC·0.75BDCH 2 (BDC = Benzenedicarboxylate), a Hybrid Inorganic−Organic Vernier Structure|volume=127|issue=43|at=pp. 15000–15001|issn=0002-7863|date=2005-10-07|language=German|doi=10.1021/ja055757a|pmid=16248619}}

MIL-53(Co)

|Co2+

|2005

|MOF-71

|{{citation|surname1=Nathaniel L. Rosi, Jaheon Kim, Mohamed Eddaoudi, Banglin Chen, Michael O'Keeffe|periodical=Journal of the American Chemical Society|title=Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units|volume=127|issue=5|at=pp. 1504–1518|issn=0002-7863|date=2005-01-13|language=German|doi=10.1021/ja045123o|pmid=15686384}}{{citation|surname1=Alexis S. Munn, Guy J. Clarkson, Franck Millange, Yves Dumont, Richard I. Walton|periodical=CrystEngComm|title=M(ii) (M = Mn, Co, Ni) variants of the MIL-53-type structure with pyridine-N-oxide as a co-ligand|volume=15|issue=45|at=p. 9679|issn=1466-8033|date=2013|language=German|doi=10.1039/c3ce41268g|url=http://xlink.rsc.org/?DOI=c3ce41268g

|url-access=subscription}}

MIL-53(Ga)

|Ga3+

|2008

|

|{{citation|surname1=Marie Vougo-Zanda, Jin Huang, Ekaterina Anokhina, Xiqu Wang, Allan J. Jacobson|periodical=Inorganic Chemistry|title=Tossing and Turning: Guests in the Flexible Frameworks of Metal(III) Dicarboxylates|volume=47|issue=24|at=pp. 11535–11542|issn=0020-1669|date=2008-12-15|language=German|doi=10.1021/ic800008f|pmid=18433098}}

MIL-53(Mn)

|Mn2+

|2010

|

|{{citation|surname1=Guohai Xu, Xiaoguang Zhang, Peng Guo, Chengling Pan, Hongjie Zhang|periodical=Journal of the American Chemical Society|title=Mn II -based MIL-53 Analogues: Synthesis Using Neutral Bridging μ 2 -Ligands and Application in Liquid-Phase Adsorption and Separation of C6−C8 Aromatics|volume=132|issue=11|at=pp. 3656–3657|issn=0002-7863|date=2010-03-24|language=German|doi=10.1021/ja910818a|pmid=20196605}}

MIL-53(Sc)

|Sc3+

|2011

|

|{{Cite journal|last1=Mowat|first1=John P.S.|last2=Miller|first2=Stuart R.|last3=Slawin|first3=Alexandra M.Z.|last4=Seymour|first4=Valerie R.|last5=Ashbrook|first5=Sharon E.|last6=Wright|first6=Paul A.|date=June 2011|title=Synthesis, characterisation and adsorption properties of microporous scandium carboxylates with rigid and flexible frameworks|journal=Microporous and Mesoporous Materials|language=en|volume=142|issue=1|pages=322–333|doi=10.1016/j.micromeso.2010.12.016}}

MIL-53(Ni)

|Ni2+

|2013

|

|

Terephthalate was used as linker molecules in the early reports on MIL-53 materials. Later, terephthalate-based linker molecules with additional functional groups were used for the synthesis of functionalized MIL-53 materials. Apart from the two carboxylate groups of terephthalate, which are used for the formation of the framework structure, the functional linker molecules contain one or more functional groups at the benzene ring, which do not participate in the formation of the framework.

class="wikitable"

|+Overview of MIL-53(M) materials with functional linker molecules

! rowspan="2" |Functional linker

! colspan="6" |Metal center(M)

V

!Cr

!Al

!Fe

!In

!Ga

File:2-Aminoterephthalate.svg

2-Aminobenzene-1,4-dicarboxylate

|{{citation|surname1=Karen Leus, Sarah Couck, Matthias Vandichel, Gauthier Vanhaelewyn, Ying-Ya Liu|periodical=Physical Chemistry Chemical Physics|title=Synthesis, characterization and sorption properties of NH2-MIL-47|volume=14|issue=44|at=p. 15562|issn=1463-9076|date=2012|language=German|doi=10.1039/c2cp42137b|pmid=23073025|bibcode=2012PCCP...1415562L|url=http://xlink.rsc.org/?DOI=c2cp42137b

|url-access=subscription}}

| -

|{{citation|surname1=Tim Ahnfeldt, Daniel Gunzelmann, Thierry Loiseau, Dunja Hirsemann, Jürgen Senker|periodical=Inorganic Chemistry|title=Synthesis and Modification of a Functionalized 3D Open-Framework Structure with MIL-53 Topology|volume=48|issue=7|at=pp. 3057–3064|issn=0020-1669|date=2009-04-06|language=German|doi=10.1021/ic8023265|pmid=19245258|hdl=10536/DRO/DU:30064444|hdl-access=free}}{{citation|surname1=Tim Ahnfeldt, Nathalie Guillou, Daniel Gunzelmann, Irene Margiolaki, Thierry Loiseau|periodical=Angewandte Chemie International Edition|title=[Al 4 (OH) 2 (OCH 3 ) 4 (H 2 N-bdc) 3 ]⋅ x H 2 O: A 12-Connected Porous Metal-Organic Framework with an Unprecedented Aluminum-Containing Brick|volume=48|issue=28|at=pp. 5163–5166|date=2009-06-29|language=German|doi=10.1002/anie.200901409|pmid=19504512}}

|{{citation|surname1=Sebastian Bauer, Christian Serre, Thomas Devic, Patricia Horcajada, Jérôme Marrot|periodical=Inorganic Chemistry|title=High-Throughput Assisted Rationalization of the Formation of Metal Organic Frameworks in the Iron(III) Aminoterephthalate Solvothermal System|volume=47|issue=17|at=pp. 7568–7576|issn=0020-1669|date=2008-08-06|language=German|doi=10.1021/ic800538r|pmid=18681423}}

|{{citation|surname1=Pablo Serra-Crespo, Elena Gobechiya, Enrique V. Ramos-Fernandez, Jana Juan-Alcañiz, Alberto Martinez-Joaristi|periodical=Langmuir|title=Interplay of Metal Node and Amine Functionality in NH 2 -MIL-53: Modulating Breathing Behavior through Intra-framework Interactions|volume=28|issue=35|at=pp. 12916–12922|issn=0743-7463|date=2012-09-04|language=German|doi=10.1021/la302824j|pmid=22891682}}

|

File:2-Fluorobenzene-1,4-dicarboxylate.svg

2-Fluorobenzene-1,4-dicarboxylate

|{{citation|surname1=Shyam Biswas, Tom Rémy, Sarah Couck, Dmytro Denysenko, Geert Rampelberg|periodical=Physical Chemistry Chemical Physics|title=Partially fluorinated MIL-47 and Al-MIL-53 frameworks: influence of functionalization on sorption and breathing properties|volume=15|issue=10|at=p. 3552|issn=1463-9076|date=2013|language=German|doi=10.1039/c3cp44204g|pmid=23381460|bibcode=2013PCCP...15.3552B|url=http://xlink.rsc.org/?DOI=c3cp44204g

}}

| -

|

| -

| -

| -

File:2-Chlorobenzene-1,4-dicarboxylate.svg

2-Chlorobenzene-1,4-dicarboxylate

|{{citation|surname1=Shyam Biswas, Danny E. P. Vanpoucke, Toon Verstraelen, Matthias Vandichel, Sarah Couck|periodical=The Journal of Physical Chemistry C|title=New Functionalized Metal–Organic Frameworks MIL-47-X (X = −Cl, −Br, −CH 3, −CF 3, −OH, −OCH 3 ): Synthesis, Characterization, and CO 2 Adsorption Properties|volume=117|issue=44|at=pp. 22784–22796|issn=1932-7447|date=2013-11-07|language=German|doi=10.1021/jp406835n}}

|{{citation|surname1=Pascal G. Yot, Ke Yang, Vincent Guillerm, Florence Ragon, Vladimir Dmitriev|periodical=European Journal of Inorganic Chemistry|title=Impact of the Metal Centre and Functionalization on the Mechanical Behaviour of MIL-53 Metal-Organic Frameworks: Impact of the Metal Centre and Functionalization on the Mechanical Behaviour of MIL-53 Metal-Organic Frameworks|volume=2016|issue=27|at=pp. 4424–4429|date=September 2016|language=German|doi=10.1002/ejic.201600263|hdl=10023/11147|s2cid=100565312 |hdl-access=free}}

|{{citation|surname1=Shyam Biswas, Tim Ahnfeldt, Norbert Stock|periodical=Inorganic Chemistry|title=New Functionalized Flexible Al-MIL-53-X (X = -Cl, -Br, -CH 3, -NO 2, -(OH) 2 ) Solids: Syntheses, Characterization, Sorption, and Breathing Behavior|volume=50|issue=19|at=pp. 9518–9526|issn=0020-1669|date=2011-10-03|language=German|doi=10.1021/ic201219g|pmid=21899293}}

|{{citation|surname1=Thomas Devic, Patricia Horcajada, Christian Serre, Fabrice Salles, Guillaume Maurin|periodical=Journal of the American Chemical Society|title=Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the Host−Guest Interactions|volume=132|issue=3|at=pp. 1127–1136|issn=0002-7863|date=2010-01-27|language=German|doi=10.1021/ja9092715|pmid=20038143}}

| -

| -

File:2-Bromobenzene-1,4-dicarboxylate.svg

2-Bromobenzene-1,4-dicarboxylate

|

| -

|

|

|{{citation|surname1=Lei Wu, Gérald Chaplais, Ming Xue, Shilun Qiu, Joël Patarin|periodical=RSC Advances|title=New functionalized MIL-53(In) solids: syntheses, characterization, sorption, and structural flexibility|volume=9|issue=4|at=pp. 1918–1928|issn=2046-2069|date=2019|language=German|doi=10.1039/C8RA08522F|pmid=35516115 |pmc=9059721 |bibcode=2019RSCAd...9.1918W |doi-access=free}}

| -

File:2-Iodobenzene-1,4-dicarboxylate.svg

2-Iodobenzene-1,4-dicarboxylate

| -

| -

|

| -

| -

| -

File:2-Nitrobenzene-1,4-dicarboxylate.svg

2-Nitrobenzene-1,4-dicarboxylate

| -

| -

|

| -

|

| -

File:Benzene-1,2,4-tricarboxylate.svg

Benzene-1,2,4-tricarboxylate

| -

| -

|{{citation|surname1=Nele Reimer, Barbara Gil, Bartosz Marszalek, Norbert Stock|periodical=CrystEngComm|title=Thermal post-synthetic modification of Al-MIL-53–COOH: systematic investigation of the decarboxylation and condensation reaction|volume=14|issue=12|at=p. 4119|issn=1466-8033|date=2012|language=German|doi=10.1039/c2ce06649a|url=http://xlink.rsc.org/?DOI=c2ce06649a

|url-access=subscription}}

| -

| -

| -

File:2-Methylbenzene-1,4-dicarboxylate.svg

2-Methylbenzene-1,4-dicarboxylate

|

|

|

|

| -

| -

File:2-Trifluoromethylbenzene-1,4-dicarboxylate.svg

2-Trifluormethylbenzene-1,4-dicarboxylate

|

| -

| -

| -

| -

| -

File:2-Hydroxybenzene-1,4-dicarboxylate.svg

2-Hydroxybenzene-1,4-dicarboxylate

|

| -

|{{citation|surname1=Dieter Himsl, Dirk Wallacher, Martin Hartmann|periodical=Angewandte Chemie International Edition|title=Improving the Hydrogen-Adsorption Properties of a Hydroxy-Modified MIL-53(Al) Structural Analogue by Lithium Doping|volume=48|issue=25|at=pp. 4639–4642|date=2009-06-08|language=German|doi=10.1002/anie.200806203|pmid=19455533}}

| -

| -

| -

File:2-Methoxybenzene-1,4-dicarboxylate.svg

2-Methoxybenzene-1,4-dicarboxylate

|

| -

| -

| -

| -

| -

File:2-Sulfobenzene-1,4-dicarboxylate.svg

2-Sulfobenzene-1,4-dicarboxylate

| -

| -

|{{citation|surname1=Jinzhu Chen, Kegui Li, Limin Chen, Ruliang Liu, Xing Huang|periodical=Green Chem.|title=Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks|volume=16|issue=5|at=pp. 2490–2499|issn=1463-9262|date=2014|language=German|doi=10.1039/C3GC42414F|url=http://xlink.rsc.org/?DOI=C3GC42414F

|url-access=subscription}}

| -

| -

| -

File:2-Isocyanatebenzene-1,4-dicarboxylate.svg

2-Isocyanatbenzene-1,4-dicarboxylate

| -

| -

|{{citation|surname1=Christophe Volkringer, Seth M. Cohen|periodical=Angewandte Chemie International Edition|title=Generating Reactive MILs: Isocyanate- and Isothiocyanate-Bearing MILs through Postsynthetic Modification|volume=49|issue=27|at=pp. 4644–4648|date=2010-06-21|language=German|doi=10.1002/anie.201001527|pmid=20480478}}

| -

| -

| -

File:2-Isothiocyanatebenzene-1,4-dicarboxylate.svg

2-Isothiocyanatbenzene-1,4-dicarboxylate

| -

| -

|

| -

| -

| -

File:2,5-Dimethylbenzene-1,4-dicarboxylate.svg

2,5-Dimethylbenzene-1,4-dicarboxylate

|{{citation|surname1=Andrea Centrone, Takuya Harada, Scott Speakman, T. Alan Hatton|periodical=Small|title=Facile Synthesis of Vanadium Metal-Organic Frameworks and their Magnetic Properties|volume=6|issue=15|at=pp. 1598–1602|date=2010-07-07|language=German|doi=10.1002/smll.201000773|pmid=20623532}}

| -

| -

| -

| -

| -

File:2,5-Dihydroxybenzene-1,4-dicarboxylate.svg

2,5-Dihydroxybenzene-1,4-dicarboxylate

|

| -

|

|

|

| -

File:2,5-Dithiolbenzene-1,4-dicarboxylate.svg

2,5-Dithiolbenzene-1,4-dicarboxylate

| -

| -

|{{citation|surname1=Alexis S. Munn, Franck Millange, Michel Frigoli, Nathalie Guillou, Clément Falaise|periodical=CrystEngComm|title=Iodine sequestration by thiol-modified MIL-53(Al)|volume=18|issue=41|at=pp. 8108–8114|issn=1466-8033|date=2016|language=German|doi=10.1039/C6CE01842D|url=http://xlink.rsc.org/?DOI=C6CE01842D

}}

| -

| -

| -

File:2,5-Fluorobenzene-1,4-dicarboxylate.svg

2,5-Difluorobenzene-1,4-dicarboxylate

|{{citation|surname1=Shyam Biswas, Sarah Couck, Dmytro Denysenko, Asamanjoy Bhunia, Maciej Grzywa|periodical=Microporous and Mesoporous Materials|title=Sorption and breathing properties of difluorinated MIL-47 and Al-MIL-53 frameworks|volume=181|at=pp. 175–181|date=2013-11-15|language=German|doi=10.1016/j.micromeso.2013.07.030}}

| -

|

| -

| -

| -

File:2,5-Bis(trifluoromethyl)benzene-1,4-dicarboxylate.svg

2,5-Bis(trifluormethyl)benzene-1,4-dicarboxylate

|{{citation|surname1=Claudia Zlotea, Delphine Phanon, Matjaz Mazaj, Daniela Heurtaux, Vincent Guillerm|periodical=Dalton Transactions|title=Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs|volume=40|issue=18|at=p. 4879|issn=1477-9226|date=2011|language=German|doi=10.1039/c1dt10115c|pmid=21431158|url=http://xlink.rsc.org/?DOI=c1dt10115c

|url-access=subscription}}

| -

| -

|

| -

| -

File:2-Amino-5-nitrobenzene-1,4-dicarboxylate.svg

2-Amino-5-nitrobenzene-1,4-dicarboxylate

| -

| -

|{{citation|surname1=Karen Markey, Martin Krüger, Tomasz Seidler, Helge Reinsch, Thierry Verbiest|periodical=The Journal of Physical Chemistry C|title=Emergence of Nonlinear Optical Activity by Incorporation of a Linker Carrying the p -Nitroaniline Motif in MIL-53 Frameworks|volume=121|issue=45|at=pp. 25509–25519|issn=1932-7447|pmc=5694968|pmid=29170688|date=2017-11-16|language=German|doi=10.1021/acs.jpcc.7b09190}}

| -

|

|

File:Benzene-1,2,4,5-tetracarboxylate.svg

Benzene-1,2,4,5-tetracarboxylate

| -

| -

|{{citation|surname1=Christophe Volkringer, Thierry Loiseau, Nathalie Guillou, Gérard Férey, Mohamed Haouas|periodical=Inorganic Chemistry|title=High-Throughput Aided Synthesis of the Porous Metal−Organic Framework-Type Aluminum Pyromellitate, MIL-121, with Extra Carboxylic Acid Functionalization|volume=49|issue=21|at=pp. 9852–9862|issn=0020-1669|date=2010-10-05|language=German|doi=10.1021/ic101128w|pmid=20923169}}

MIL-121

|{{citation|surname1=Morgane Sanselme, Jean-Marc Grenèche, Myriam Riou-Cavellec, Gérard Férey|periodical=Solid State Sciences|title=The first ferric carboxylate with a three-dimensional hydrid open-framework (MIL-82): its synthesis, structure, magnetic behavior and study of its dehydration by Mössbauer spectroscopy|volume=6|issue=8|at=pp. 853–858|date=August 2004|language=German|doi=10.1016/j.solidstatesciences.2004.04.001|bibcode=2004SSSci...6..853S}} MIL-82

| -

| -

File:2,3,5,6-Tetramethylbenzene-1,4-dicarboxylate.svg

2,3,5,6-tetramethylbenzene-1,4-dicarboxylate

| -

|{{citation|surname1=Christian Serre, Franck Millange, Thomas Devic, Nathalie Audebrand, Wouter Van Beek|periodical=Materials Research Bulletin|title=Synthesis and structure determination of new open-framework chromium carboxylate MIL-105 or CrIII(OH)·{O2C–C6(CH3)4–CO2}·nH2O|volume=41|issue=8|at=pp. 1550–1557|date=2006-08-10|language=German|doi=10.1016/j.materresbull.2006.01.013}}

MIL-105

| -

| -

| -

| -

File:2,3,5,6-Tetrachlorobenzene-1,4-dicarboxylate.svg

2,3,5,6-Tetrachlorobenzene-1,4-dicarboxylate

|

| -

| -

| -

| -

| -

File:2,3,5,6-Tetrabromobenzene-1,4-dicarboxylate.svg

2,3,5,6-Tetrabromobenzene-1,4-dicarboxylate

|

| -

| -

| -

| -

| -

File:Naphthalene-1,4-dicarboxylate.svg

Naphthalene-1,4-dicarboxylate

|

| -

|{{citation|surname1=Angiolina Comotti, Silvia Bracco, Piero Sozzani, Satoshi Horike, Ryotaro Matsuda|periodical=Journal of the American Chemical Society|title=Nanochannels of Two Distinct Cross-Sections in a Porous Al-Based Coordination Polymer|volume=130|issue=41|at=pp. 13664–13672|issn=0002-7863|date=2008-10-15|language=German|doi=10.1021/ja802589u|pmid=18798624}}

| -

| -

| -

= Mixed-component MIL-53 analogs =

Apart from monometallic single-linker MIL-53 analogs, which contain one type of metal and one type of linker within the framework structure, several mixed-component MIL-53 analogs were reported. In mixed-metal MIL-53 materials, two different metals are incorporated into the framework structure at crystallographically equivalent lattice positions. Since both type of metals occupy equivalent positions, the metal ratio can usually be changed independent from the framework structure. Mixed-metal MIL-53 analogs have been synthesized mainly by direct synthesis procedures under hydrothermal or solvothermal conditions.

class="wikitable"

|+Overview of mixed-metal MIL-53 analogs

!Metal centers and

oxidation states

!Metal ratios

[-]

!Synthesis method

!Citation

Al3+ / Cr3+

|0.99 : 0.01

|Direct synthesis

hydrothermal

|{{Cite journal|last1=Mendt|first1=Matthias|last2=Jee|first2=Bettina|last3=Himsl|first3=Dieter|last4=Moschkowitz|first4=Lutz|last5=Ahnfeldt|first5=Tim|last6=Stock|first6=Norbert|last7=Hartmann|first7=Martin|last8=Pöppl|first8=Andreas|date=March 2014|title=A Continuous-Wave Electron Paramagnetic Resonance Study of Carbon Dioxide Adsorption on the Metal–Organic Frame-Work MIL-53|journal=Applied Magnetic Resonance|language=en|volume=45|issue=3|pages=269–285|doi=10.1007/s00723-014-0518-6|s2cid=94965421|issn=0937-9347}}{{Cite journal|last1=Mendt|first1=Matthias|last2=Jee|first2=Bettina|last3=Stock|first3=Norbert|last4=Ahnfeldt|first4=Tim|last5=Hartmann|first5=Martin|last6=Himsl|first6=Dieter|last7=Pöppl|first7=Andreas|date=2010-11-18|title=Structural Phase Transitions and Thermal Hysteresis in the Metal−Organic Framework Compound MIL-53 As Studied by Electron Spin Resonance Spectroscopy|journal=The Journal of Physical Chemistry C|volume=114|issue=45|pages=19443–19451|doi=10.1021/jp107487g|issn=1932-7447}}{{Cite journal|last1=Barth|first1=Benjamin|last2=Mendt|first2=Matthias|last3=Pöppl|first3=Andreas|last4=Hartmann|first4=Martin|date=2015-11-01|title=Adsorption of nitric oxide in metal-organic frameworks: Low temperature IR and EPR spectroscopic evaluation of the role of open metal sites|url=http://www.sciencedirect.com/science/article/pii/S1387181115000955|journal=Microporous and Mesoporous Materials|series=Special Issue: New Generations of Porous Metal-Organic Frameworks|language=en|volume=216|pages=97–110|doi=10.1016/j.micromeso.2015.02.020|issn=1387-1811|url-access=subscription}}

rowspan="2" |Al3+ / V4+

|0.99 : 0.01

0.95 : 0.05

0.71 : 0.29

0.32 : 0.68

0.13 : 0.87

|Direct synthesis

hydrothermal

|{{Cite journal|last1=Kozachuk|first1=Olesia|last2=Meilikhov|first2=Mikhail|last3=Yusenko|first3=Kirill|last4=Schneemann|first4=Andreas|last5=Jee|first5=Bettina|last6=Kuttatheyil|first6=Anusree V.|last7=Bertmer|first7=Marko|last8=Sternemann|first8=Christian|last9=Pöppl|first9=Andreas|last10=Fischer|first10=Roland A.|date=2013-09-03|title=A Solid-Solution Approach to Mixed-Metal Metal-Organic Frameworks - Detailed Characterization of Local Structures, Defects and Breathing Behaviour of Al/V Frameworks|journal=European Journal of Inorganic Chemistry|language=en|volume=2013|issue=26|pages=4546–4557|doi=10.1002/ejic.201300591}}

?

|?

|{{Cite journal|last1=Nevjestić|first1=Irena|last2=Depauw|first2=Hannes|last3=Gast|first3=Peter|last4=Tack|first4=Pieter|last5=Deduytsche|first5=Davy|last6=Leus|first6=Karen|last7=Van Landeghem|first7=Melissa|last8=Goovaerts|first8=Etienne|last9=Vincze|first9=Laszlo|last10=Detavernier|first10=Christophe|last11=Van Der Voort|first11=Pascal|date=2017|title=Sensing the framework state and guest molecules in MIL-53(Al) via the electron paramagnetic resonance spectrum of V IV dopant ions|url=http://xlink.rsc.org/?DOI=C7CP04760F|journal=Physical Chemistry Chemical Physics|language=en|volume=19|issue=36|pages=24545–24554|doi=10.1039/C7CP04760F|pmid=28852751|bibcode=2017PCCP...1924545N|hdl=1854/LU-8534452|issn=1463-9076|hdl-access=free}}

rowspan="2" |Al3+ / Fe3+

|0.85 : 0.15

0.99 : 0.01

|Direct synthesis

electrochemical

| rowspan="2" |{{Cite journal|last1=Osadchii|first1=Dmitrii Y.|last2=Olivos-Suarez|first2=Alma I.|last3=Szécsényi|first3=Ágnes|last4=Li|first4=Guanna|last5=Nasalevich|first5=Maxim A.|last6=Dugulan|first6=Iulian A.|last7=Crespo|first7=Pablo Serra|last8=Hensen|first8=Emiel J. M.|last9=Veber|first9=Sergey L.|last10=Fedin|first10=Matvey V.|last11=Sankar|first11=Gopinathan|date=June 2018|title=Isolated Fe Sites in Metal Organic Frameworks Catalyze the Direct Conversion of Methane to Methanol|journal=ACS Catalysis|language=en|volume=8|issue=6|pages=5542–5548|doi=10.1021/acscatal.8b00505|hdl=10754/627902|s2cid=104144811 |issn=2155-5435|hdl-access=free}}

0.96 : 0.04

|Post-synthetic metal-exchange

Al3+ / Ga3+

|≈ 0.70 : 0.30

≈ 0.85 : 0.15

|Direct synthesis

hydrothermal

|{{Cite journal|last1=Bignami|first1=Giulia P. M.|last2=Davis|first2=Zachary H.|last3=Dawson|first3=Daniel M.|last4=Morris|first4=Samuel A.|last5=Russell|first5=Samantha E.|last6=McKay|first6=David|last7=Parke|first7=Richard E.|last8=Iuga|first8=Dinu|last9=Morris|first9=Russell E.|last10=Ashbrook|first10=Sharon E.|date=2018|title=Cost-effective 17 O enrichment and NMR spectroscopy of mixed-metal terephthalate metal–organic frameworks|journal=Chemical Science|language=en|volume=9|issue=4|pages=850–859|doi=10.1039/C7SC04649A|issn=2041-6520|pmc=5873045|pmid=29629152}}

rowspan="2" |Cr3+ / V/4+

|0.05 : 0.95

0.10 : 0.90

0.23 : 0.77

0.50 : 0.50

0.75 : 0.25

|Direct synthesis

microwave

| rowspan="2" |{{Cite journal|last1=Depauw|first1=Hannes|last2=Nevjestić|first2=Irena|last3=De Winne|first3=Jonatan|last4=Wang|first4=Guangbo|last5=Haustraete|first5=Katrien|last6=Leus|first6=Karen|last7=Verberckmoes|first7=An|last8=Detavernier|first8=Christophe|last9=Callens|first9=Freddy|last10=De Canck|first10=Els|last11=Vrielinck|first11=Henk|date=2017|title=Microwave induced "egg yolk" structure in Cr/V-MIL-53|url=http://xlink.rsc.org/?DOI=C7CC04651K|journal=Chemical Communications|language=en|volume=53|issue=60|pages=8478–8481|doi=10.1039/C7CC04651K|pmid=28703241|issn=1359-7345|url-access=subscription}}

0.07 : 0.93

0.13 : 0.87

0.17 : 0.83

0.37 : 0.63

0.58 : 0.42

|Direct synthesis

solvothermal

Cr3+ / Fe3+

|0.60 : 0.40

|Direct synthesis

hydrothermal

|{{Cite journal|last1=Nouar|first1=Farid|last2=Devic|first2=Thomas|last3=Chevreau|first3=Hubert|last4=Guillou|first4=Nathalie|last5=Gibson|first5=Emma|last6=Clet|first6=Guillaume|last7=Daturi|first7=Marco|last8=Vimont|first8=Alexandre|last9=Grenèche|first9=Jean Marc|last10=Breeze|first10=Matthew I.|last11=Walton|first11=Richard I.|date=2012|title=Tuning the breathing behaviour of MIL-53 by cation mixing|url=http://xlink.rsc.org/?DOI=c2cc35348b|journal=Chemical Communications|language=en|volume=48|issue=82|pages=10237–10239|doi=10.1039/c2cc35348b|pmid=22968060|issn=1359-7345|url-access=subscription}}

Fe2+/3+ / V2+/3+

|0.88 : 0.12

0.76 : 0.24

0.74 : 0.26

0.49 : 0.51

|Direct synthesis

solvothermal

|{{Cite journal|last1=Breeze|first1=Matthew I.|last2=Clet|first2=Guillaume|last3=Campo|first3=Betiana C.|last4=Vimont|first4=Alexandre|last5=Daturi|first5=Marco|last6=Grenèche|first6=Jean-Marc|last7=Dent|first7=Andrew J.|last8=Millange|first8=Franck|last9=Walton|first9=Richard I.|date=2013-07-15|title=Isomorphous Substitution in a Flexible Metal–Organic Framework: Mixed-Metal, Mixed-Valent MIL-53 Type Materials|journal=Inorganic Chemistry|language=en|volume=52|issue=14|pages=8171–8182|doi=10.1021/ic400923d|pmid=23815225|s2cid=40656565 |issn=0020-1669|url=http://bib-pubdb1.desy.de/record/167766/files/Isomorphous%20REVISED%20FINAL-unmarked.pdf}}

Fe2+ / Mn2+

|0.90 : 0.10

0.88 : 0.12

0.82 : 0.18

0.74 : 0.26

| rowspan="3" |Direct synthesis

solvothermal

| rowspan="3" |{{Cite journal|last1=Sun|first1=Qiao|last2=Liu|first2=Min|last3=Li|first3=Keyan|last4=Han|first4=Yitong|last5=Zuo|first5=Yi|last6=Chai|first6=Fanfan|last7=Song|first7=Chunshan|last8=Zhang|first8=Guoliang|last9=Guo|first9=Xinwen|date=2017-01-13|title=Synthesis of Fe/M (M = Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions|url=https://pubs.rsc.org/en/content/articlelanding/2017/qi/c6qi00441e|journal=Inorganic Chemistry Frontiers|language=en|volume=4|issue=1|pages=144–153|doi=10.1039/C6QI00441E|issn=2052-1553|url-access=subscription}}

Fe2+ / Co2+

|0.97 : 0.03

0.94 : 0.06

0.90 : 0.10

Fe2+ / Ni2+

|0.91 : 0.09

0.89 : 0.11

0.84 : 0.16

0.78 : 0.22

Similar to mixed-metal MIL-53 materials, mixed-linker MIL-53 analogs have been reported, in which two different linker molecules are incorporated into the framework structure at crystallographically equivalent positions with different ratios. One benefit of using the mixed-linker concept is that the number of functional groups in the framework can be adjusted by using different linker ratios.

class="wikitable"

|+Overview of mixed-linker MIL-53 analogs

!Linker 1

!Linker 2

!Linker ratios

[-]

!Metal center

!Synthesis method

!Citation

rowspan="2" |File:Benzene-1,4-dicarboxylate.svg

Benzene-1,4-dicarboxylate

| rowspan="2" |File:2-Aminoterephthalate.svg

2-Aminobenzene-1,4-dicarboxylate

|0.90 : 0.10

0.50 : 0.50

0.10 : 0.90

| rowspan="2" |Al3+

| rowspan="2" |Direct synthesis

hydrothermal

|{{Cite journal|last1=Marx|first1=Stefan|last2=Kleist|first2=Wolfgang|last3=Huang|first3=Jun|last4=Maciejewski|first4=Marek|last5=Baiker|first5=Alfons|date=2010|title=Tuning functional sites and thermal stability of mixed-linker MOFs based on MIL-53(Al)|url=http://xlink.rsc.org/?DOI=c002483j|journal=Dalton Transactions|language=en|volume=39|issue=16|pages=3795–8|doi=10.1039/c002483j|pmid=20372702|issn=1477-9226|url-access=subscription}}

0.90 : 0.10

0.82 : 0.18

0.51 : 0.49

0.48 : 0.62

|{{Cite journal|last1=Lescouet|first1=Tristan|last2=Kockrick|first2=Emanuel|last3=Bergeret|first3=Gérard|last4=Pera-Titus|first4=Marc|last5=Aguado|first5=Sonia|last6=Farrusseng|first6=David|date=2012|title=Homogeneity of flexible metal–organic frameworks containing mixed linkers|url=http://xlink.rsc.org/?DOI=c2jm15966j|journal=Journal of Materials Chemistry|language=en|volume=22|issue=20|pages=10287|doi=10.1039/c2jm15966j|issn=0959-9428|url-access=subscription}}{{Cite journal|last1=Lescouet|first1=Tristan|last2=Kockrick|first2=Emanuel|last3=Bergeret|first3=Gerard|last4=Pera-Titus|first4=Marc|last5=Farrusseng|first5=David|date=2011|title=Engineering MIL-53(Al) flexibility by controlling amino tags|url=http://xlink.rsc.org/?DOI=c1dt11700a|journal=Dalton Transactions|language=en|volume=40|issue=43|pages=11359–61|doi=10.1039/c1dt11700a|pmid=21975376|issn=1477-9226|url-access=subscription}}{{Cite journal|last1=Pera-Titus|first1=M.|last2=Lescouet|first2=T.|last3=Aguado|first3=S.|last4=Farrusseng|first4=D.|date=2012-05-03|title=Quantitative Characterization of Breathing upon Adsorption for a Series of Amino-Functionalized MIL-53|journal=The Journal of Physical Chemistry C|language=en|volume=116|issue=17|pages=9507–9516|doi=10.1021/jp2117856|issn=1932-7447}}

File:Benzene-1,4-dicarboxylate.svg

Benzene-1,4-dicarboxylate

|File:2,5-Dihydroxybenzene-1,4-dicarboxylate.svg

2,5-Dihydroxybenzene-1,4-dicarboxylate

|0.75 : 0.25

0.50 : 0.50

0.25 : 0.75

|Al3+

|Direct synthesis

solvothermal

|{{Cite journal|last1=Yang|first1=Jie|last2=Yan|first2=Xing|last3=Xue|first3=Teng|last4=Liu|first4=Yongshen|date=2016|title=Enhanced CO 2 adsorption on Al-MIL-53 by introducing hydroxyl groups into the framework|url=http://xlink.rsc.org/?DOI=C6RA09350G|journal=RSC Advances|language=en|volume=6|issue=60|pages=55266–55271|doi=10.1039/C6RA09350G|bibcode=2016RSCAd...655266Y |issn=2046-2069|url-access=subscription}}{{Cite journal|last1=Andonova|first1=Stanislava|last2=Ivanova|first2=Elena|last3=Yang|first3=Jie|last4=Hadjiivanov|first4=Konstantin|date=2017-08-31|title=Adsorption Forms of CO 2 on MIL-53(Al) and MIL-53(Al)–OH x As Revealed by FTIR Spectroscopy|journal=The Journal of Physical Chemistry C|language=en|volume=121|issue=34|pages=18665–18673|doi=10.1021/acs.jpcc.7b05538|issn=1932-7447}}

File:Benzene-1,4-dicarboxylate.svg

Benzene-1,4-dicarboxylate

|File:2-Iodobenzene-1,4-dicarboxylate.svg

2-Iodobenzene-1,4-dicarboxylate

|0.81 : 0.19

0.55 : 0.45

0.27 : 0.73

|Al3+

|Direct synthesis

hydrothermal

|{{Cite journal|last1=Tahmouresilerd|first1=Babak|last2=Larson|first2=Patrick J.|last3=Unruh|first3=Daniel K.|last4=Cozzolino|first4=Anthony F.|date=2018-08-28|title=Make room for iodine: systematic pore tuning of multivariate metal–organic frameworks for the catalytic oxidation of hydroquinones using hypervalent iodine|url=https://pubs.rsc.org/en/content/articlelanding/2018/cy/c8cy00794b|journal=Catalysis Science & Technology|language=en|volume=8|issue=17|pages=4349–4357|doi=10.1039/C8CY00794B|issn=2044-4761|url-access=subscription}}

References