Mahler polynomial

{{Multiple issues|

{{Only primary sources|date=December 2023}}

{{One source|date=December 2023}}

{{format footnotes |date=May 2024}}

}}

In mathematics, the Mahler polynomials gn(x) are polynomials introduced by Mahler{{harvtxt|Mahler|1930|authorlink=Kurt Mahler}} in his work on the zeros of the incomplete gamma function.

Mahler polynomials are given by the generating function

:\displaystyle \sum g_n(x)t^n/n! = \exp(x(1+t-e^t))

Which is close to the generating function of the Touchard polynomials.

The first few examples are {{OEIS|A008299}}

:g_0=1;

:g_1=0;

:g_2=-x;

:g_3=-x;

:g_4=-x+3x^2;

:g_5=-x+10x^2;

:g_6=-x+25x^2-15x^3;

:g_7=-x+56x^2-105x^3;

:g_8=-x+119x^2-490x^3+105x^4;

References

{{Reflist}}

  • {{Citation | last1=Mahler | first1=Kurt | title=Über die Nullstellen der unvollständigen Gammafunktionen. | language=German | jfm=56.0310.01 | year=1930 | journal=Rendiconti Palermo | volume=54 | pages=1–41| doi=10.1007/BF03021175 }}

Category:Polynomials

{{polynomial-stub}}