Makemake

{{Short description|Dwarf planet in the Outer Solar System}}

{{About|the dwarf planet|the Rapa Nui god|Makemake (deity)|other uses}}

{{Featured article}}

{{Infobox planet

| minorplanet = yes

| background = #C2E0FF

| name = 136472 Makemake

| symbol = File:Makemake symbol (bold).svg (mostly astrological)

| image = Makemake and its moon.jpg

| caption = Low-resolution image of Makemake and its unnamed moon S/2015 (136472) 1 by the Hubble Space Telescope, April 2015

| discoverer = {{plainlist |

}}

| discovered = March 31, 2005

| earliest_precovery_date = January 29, 1955

| mpc_name = (136472) Makemake

| pronounced = {{IPAc-en|UK|ˌ|m|æ|k|i|ˈ|m|æ|k|i}}, {{IPAc-en|US|ˌ|m|ɑː|k|i|ˈ|m|ɑː|k|i}} or {{IPAc-en|audio=en-us-Makemake.ogg|ˌ|m|ɑː|k|eɪ|ˈ|m|ɑː|k|eɪ}}{{refn|The Rapa Nui pronunciation is {{IPA|rap|ˈmakeˈmake|}}, which is anglicized as {{IPAc-en|ˈ|m|æ|k|i|ˈ|m|æ|k|i}} in the UK and {{IPAc-en|ˈ|m|ɑː|k|i|ˈ|m|ɑː|k|i}} as well as {{IPAc-en|ˈ|m|ɑː|k|eɪ|ˈ|m|ɑː|k|eɪ}} in the US. The distinction between {{IPAc-en|ɑː}} and {{IPAc-en|æ}} reflect how the US and UK handle the Polynesian 'a' (parallel to the first 'a' in Italian 'pasta'); the {{IPAc-en|eɪ}} pronunciation attempts to approximate the Polynesian 'e', and is used by Brown and his students.Podcast [http://365daysofastronomy.org/2009/03/31/march-31st/ Dwarf Planet Haumea] {{Webarchive|url=https://web.archive.org/web/20120220034436/http://365daysofastronomy.org/2009/03/31/march-31st/ |date=2012-02-20 }} (Darin Ragozzine, at 3′11″)|group=lower-alpha}}

| alt_names = {{mp|2005 FY|9}}

| adjectives = Makemakean

| named_after = Makemake

| mp_category = {{ubli|Dwarf planet|TNO|cubewano|scattered-near}}

| orbit_ref =

| epoch = May 31, 2020
(JD 2458900.5)

| aphelion = {{cvt|52.756|AU|Tm|lk=on}}

| perihelion = {{cvt|38.104|AU|Tm}}

| time_periastron = 17 November 2186

| semimajor = {{cvt|45.430|AU|Tm}}

| eccentricity = 0.16126

| period = 306.21 yr (111,845 d)

| avg_speed = 4.419 km/s

| inclination = 28.9835°

| asc_node = 79.620°

| arg_peri = 294.834°

| mean_anomaly = 165.514°

| satellites = 1 (S/2015 (136472) 1)

| axial_tilt =

| sidereal_day = {{val|22.8266|0.0001|u=hours}}

| dimensions = {{plainlist|

{{nowrap|({{val|1434|48|-18}})}} × projected {{nowrap|({{val|1420|18|-24|u=km}})}}

}}

| mean_radius = {{plainlist|

  • {{val|715|19|-11|u=km}}}}

| flattening = 0.0098{{refn|group=lower-alpha|name=flattening1|Calculated using (a−b)/a and the dimensions from Brown}}

| surface_area = {{val|6.42|e=6|u=km2}}{{refn|group=lower-alpha|name=surface-vol|Calculated using the dimensions from Brown assuming an oblate spheroid.}}{{cite web|url=http://www.wolframalpha.com/input/?i=surface+ellipsoid+717x717x710|title=surface ellipsoid 717x717x710 – Wolfram-Alpha|access-date=2019-12-22|archive-date=2019-12-22|archive-url=https://web.archive.org/web/20191222034931/https://www.wolframalpha.com/input/?i=surface+ellipsoid+717x717x710|url-status=live}}

| volume = {{val|1.53|e=9|u=km3}}{{refn||group=lower-alpha|name=surface-vol}}{{cite web|url=http://www.wolframalpha.com/input/?i=volume+ellipsoid+717x717x710|title=volume ellipsoid 717x717x710 – Wolfram-Alpha|access-date=2019-12-22|archive-date=2019-12-22|archive-url=https://web.archive.org/web/20191222034937/https://www.wolframalpha.com/input/?i=volume+ellipsoid+717x717x710|url-status=live}}

| mass = {{val|3.1|e=21|u=kg|p=≈ }}Parker et al. (2018) [https://web.archive.org/web/20191204084356/http://www.mpe.mpg.de/~tmueller/sbnaf/doc/parker_dps18.pdf The Mass, Density, and Figure of the Kuiper Belt Dwarf Planet Makemake]

| density = {{ubli|{{val|1.7|u=g/cm3|p=≈ }} (using Ortiz et al. 2012 radius)|{{val|2.1|u=g/cm3|p=≈ }} (using Brown 2013 radius)}}

| surface_grav = < {{Gr|4.4|715|2}} m/s2

| escape_velocity = < {{V2|4.4|715|2}} km/s

| albedo = {{ubli|{{val|0.82|0.02}} geometric|{{val|0.74|0.06}} Bond}}

| single_temperature = {{ubli|32–36 K (single-terrain model)|40–44 K (two-terrain model)}}

| spectral_type = B−V=0.83, V−R=0.5

| abs_magnitude = {{ubli|{{val|-0.12}}|{{val|0.049|0.020}}}}

| magnitude = 17.0 (opposition)

}}

Makemake{{refn|Pronounced as four syllables, with stress on the a's. Values of the vowels vary; see info-box.|group=lower-alpha}} (minor-planet designation: 136472 Makemake) is a dwarf planet and the largest of what is known as the classical population of Kuiper belt objects,{{refn|Astronomers Mike Brown, David Jewitt and Marc Buie classify Makemake as a near scattered object but the Minor Planet Center, from which Wikipedia draws most of its definitions for the trans-Neptunian population, places it among the main Kuiper belt population.|group=lower-alpha|name=B}} with a diameter approximately that of Saturn's moon Iapetus, or 60% that of Pluto. It has one known satellite. Its extremely low average temperature, about {{cvt|40|K|C|lk=in|-1}}, means its surface is covered with methane, ethane, and possibly nitrogen ices. Makemake shows signs of geothermal activity and thus may be capable of supporting active geology and harboring an active subsurface ocean.{{cite web | url=https://scitechdaily.com/astronomers-uncover-surprising-activity-on-the-dwarf-planets-eris-and-makemake/ | title=Astronomers Uncover Surprising Activity on the Dwarf Planets Eris and Makemake | date=20 February 2024 }}

Makemake was discovered on March 31, 2005, by a team led by Michael E. Brown, and announced on July 29, 2005. It was initially known as {{mp|2005 FY|9}} and later given the minor-planet number 136472. In July 2008, it was named after Makemake, a creator god in the Rapa Nui mythology of Easter Island, under the expectation by the International Astronomical Union (IAU) that it would prove to be a dwarf planet.

History

=Discovery=

Makemake was discovered on March 31, 2005, by a team at the Palomar Observatory, led by Michael E. Brown, and was announced to the public on July 29, 2005. The team had planned to delay announcing their discoveries of the bright objects Makemake and {{dp|Eris}} until further observations and calculations were complete, but announced them both on July 29 when the discovery of another large object they had been tracking, {{dp|Haumea}}, was controversially announced on July 27 by a different team in Spain.

The earliest known precovery observations of Makemake have been found in photographic plates of the Palomar Observatory's Digitized Sky Survey from January 29, 1955 to May 1, 1998.

Despite its relative brightness (a fifth as bright as Pluto),{{refn|It has an apparent magnitude at opposition of 16.7 vs. 15.1 for Pluto.|group=lower-alpha}} Makemake was not discovered until after many much fainter Kuiper belt objects. Most searches for minor planets are conducted relatively close to the ecliptic (the region of the sky that the Sun, Moon, and planets appear to lie in, as seen from Earth), due to the greater likelihood of finding objects there. It probably escaped detection during the earlier surveys due to its relatively high orbital inclination, and the fact that it was at its farthest distance from the ecliptic at the time of its discovery, in the northern constellation of Coma Berenices.

Makemake is the brightest trans-Neptunian object after Pluto, with an apparent magnitude of 16.2 in late 1930,{{Cite web|url=https://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=sb&sstr=2005FY9|title=HORIZONS Web-Interface|access-date=2020-06-30|archive-date=2021-02-04|archive-url=https://web.archive.org/web/20210204223838/https://ssd.jpl.nasa.gov/horizons.cgi?find_body=1|url-status=live}} it is theoretically bright enough to have been discovered by Clyde Tombaugh, whose search for trans-Neptunian objects was sensitive to objects up to magnitude 17. Indeed, in 1934 Tombaugh reported that there were no other planets out to a magnitude of 16.5 and an inclination of 17 degrees, or of greater inclination but within 50 degrees of either node.{{cite book|last=Tombaugh|first=Clyde|author2=Patrick Moore|title=Out of the Darkness: The Planet Pluto|publisher=Stackpole Books|date=1980|location=Harrisburg, Pennsylvania|page=163|isbn=978-0-8117-1163-0|url=https://archive.org/details/outofdarkness00tomb/page/163}}

And Makemake was there: At the time of Tombaugh's survey (1930–1943), Makemake varied from 5.5 to 13.2 degrees from the ecliptic, moving across Auriga, starting near the northwest corner of Taurus and cutting across a corner of Gemini.{{refn|Based on Minor Planet Center online Minor Planet Ephemeris Service: March 1, 1930: RA: 05h51m, Dec: +29.0.|group=lower-alpha}} The starting position, however, was very close to the galactic anticenter, and Makemake would have been almost impossible to find against the dense background of stars.{{Dubious|Precovery and Tombaugh|date=June 2020|reason=Why haven't precovery images been found in Tombaugh's plates, now that we know where to look? Was Makemake in one of the rich star fields that Tombaugh decided not to photograph?}} Tombaugh continued searching for thirteen years after his discovery of Pluto (and Makemake, though growing dimmer, was still magnitude 16.6 in early 1943, the last year of his search), but by then he was searching higher latitudes and did not find any more objects orbiting beyond Neptune.

= Name and symbol =

The provisional designation {{mp|2005 FY|9}} was given to Makemake when the discovery was made public. Before that, the discovery team used the codename "Easterbunny" for the object, because of its discovery shortly after Easter.

In July 2008, in accordance with IAU rules for classical Kuiper belt objects, {{mp|2005 FY|9}} was given the name of a creator deity. The name of Makemake, the creator of humanity and god of fertility in the myths of the Rapa Nui, the native people of Easter Island, was chosen in part to preserve the object's connection with Easter.

Planetary symbols are no longer much used in astronomy. A Makemake symbol {{angbr|File:Makemake symbol (fixed width).svg}} is included in Unicode as U+1F77C:{{Cite web |url=https://www.unicode.org/alloc/Pipeline.html |title=Proposed New Characters: The Pipeline |access-date=2022-01-29 |archive-date=2022-01-29 |archive-url=https://web.archive.org/web/20220129110620/https://www.unicode.org/alloc/Pipeline.html |url-status=live }} it is mostly used by astrologers,{{cite web|url=https://www.unicode.org/L2/L2021/21224-dwarf-planet-syms.pdf|title=Unicode request for dwarf-planet symbols|last=Miller|first=Kirk|date=26 October 2021|website=unicode.org|access-date=6 August 2022|archive-date=23 March 2022|archive-url=https://web.archive.org/web/20220323174107/https://www.unicode.org/L2/L2021/21224-dwarf-planet-syms.pdf|url-status=live}} but has also been used by NASA.{{cite web |url= https://www.jpl.nasa.gov/infographics/what-is-a-dwarf-planet |author= JPL/NASA |date= April 22, 2015 |website= Jet Propulsion Laboratory |title= What is a Dwarf Planet? |access-date= 2021-09-24 |archive-date= 2021-01-19 |archive-url= https://web.archive.org/web/20210119181743/https://www.jpl.nasa.gov/infographics/what-is-a-dwarf-planet |url-status= live }} The symbol was designed by Denis Moskowitz and John T. Whelan; it is a traditional petroglyph of Makemake's face stylized to resemble an 'M'.{{cite web |url=http://blog.unicode.org/2022/05/out-of-this-world-new-astronomy-symbols.html |title=Out of this World: New Astronomy Symbols Approved for the Unicode Standard |last=Anderson |first=Deborah |date=4 May 2022 |website=unicode.org |publisher=The Unicode Consortium |access-date=6 August 2022 |archive-date=6 August 2022 |archive-url=https://web.archive.org/web/20220806075352/http://blog.unicode.org/2022/05/out-of-this-world-new-astronomy-symbols.html |url-status=live }} The commercial Solar Fire astrology software uses an alternative symbol (16px), a crossed variant of a symbol (16px) created by astrologer Henry Seltzer for his commercial software.

Orbit and classification

File:TheKuiperBelt Orbits 2003EL61 2005FY9.svg (q) and the aphelia (Q) are marked with the dates of passage. The positions in April 2006 are marked with the spheres illustrating relative sizes and differences in albedo and colour.]]

File:Quaoar Haumea Makemake orbits 2018.png's. The positions are as of 1 January 2018.]]

{{as of|April 2019}}, Makemake was {{convert|52.5|AU|e9km|lk=in|abbr=unit}} from the Sun, almost as far from the Sun as it ever reaches on its orbit. Makemake follows an orbit very similar to that of {{dp|Haumea}}: highly inclined at 29° and a moderate eccentricity of about 0.16. But still, Makemake's orbit is slightly farther from the Sun in terms of both the semi-major axis and perihelion. Its orbital period is 306 years, more than Pluto's 248 years and Haumea's 283 years. Both Makemake and Haumea are currently far from the ecliptic (at an angular distance of almost 29°). Makemake will reach its aphelion in 2033, whereas Haumea passed its aphelion in early 1992.

Makemake is a classical Kuiper belt object (KBO), which means its orbit lies far enough from Neptune to remain stable over the age of the Solar System. Unlike plutinos, which can cross Neptune's orbit due to their 2:3 resonance with the planet, the classical objects have perihelia further from the Sun, free from Neptune's perturbation. Such objects have relatively low eccentricities (e below 0.2) and orbit the Sun in much the same way the planets do. Makemake, however, is a member of the "dynamically hot" class of classical KBOs, meaning that it has a high inclination compared to others in its population. Makemake is, probably coincidentally, near the 13:7 resonance with Neptune.{{Cite web |url=http://www.orbitsimulator.com/yabbfiles/Attachments/Makemake40000y_13to7.gif |title=The 2009-02-04 nominal (non-librating) rotating frame for Makemake. |access-date=2009-04-06 |archive-date=2018-09-28 |archive-url=https://web.archive.org/web/20180928165551/http://www.orbitsimulator.com/yabbfiles/Attachments/Makemake40000y_13to7.gif |url-status=live }}

Physical characteristics

= Brightness, size, and rotation =

File:Makemake-LB1-2009Nov26-11UT.jpg 16.9) with edge-on galaxy [https://in-the-sky.org/data/object.php?id=9128 IC 3587] ]]

Makemake is currently visually the second-brightest Kuiper belt object after Pluto, having a March opposition apparent magnitude of 17.0 it will pass from its present constellation Coma Berenices to Boötes in November 2028. It is bright enough to be visible using a high-end amateur telescope.

Combining the detection in infrared by the Spitzer Space Telescope and Herschel Space Telescope with the similarities of Pluto's spectrum yielded an estimated diameter from 1,360 to 1,480 km. From the 2011 stellar occultation by Makemake, its dimensions had initially been measured at {{nowrap|(1,502 ± 45) × (1,430 ± 9) km}}. However, the occultation data was later reanalyzed, leading to an estimate of {{nowrap|({{val|1434|48|-18}}) × ({{val|1420|18|-24}} km)}} without a pole-orientation constraint. Makemake was the fourth dwarf planet recognized, because it has a bright V-band absolute magnitude of 0.05. Makemake has a highly reflective surface with a geometrical albedo of {{val|0.82|0.02}}.

The rotation period of Makemake is estimated at 22.83 hours. A rotation period of 7.77 hours published in 2009 later turned out to be an alias of the actual rotation period. The possibility of this had been mentioned in the 2009 study, and the data from that study agrees well with the 22.83-hour period. This rotation period is relatively long for a dwarf planet. Part of this may be due to tidal acceleration from Makemake's satellite. It has been suggested that a second large, undiscovered satellite might better explain the dwarf planet's unusually long rotation.

Makemake's lightcurve amplitude is small, only 0.03 mag. This was thought to be due to Makemake currently being viewed pole on from Earth; however, S/2015 (136472) 1's orbital plane (which is probably orbiting with little inclination relative to Makemake's equator due to tidal effects) is edge-on from Earth, implying that Makemake is being viewed equator-on.

= Spectra and surface =

Like Pluto, Makemake appears red in the visible spectrum, and significantly redder than the surface of Eris (see colour comparison of TNOs). The near-infrared spectrum is marked by the presence of the broad methane (CH4) absorption bands. Methane is observed also on Pluto and Eris, but its spectral signature is much weaker.

Spectral analysis of Makemake's surface revealed that methane must be present in the form of large grains at least one centimetre in size. Large amounts of ethane and tholins, as well as smaller amounts of ethylene, acetylene, and high-mass alkanes (like propane), may be present, most likely created by photolysis of methane by solar radiation. The tholins are probably responsible for the red color of the visible spectrum. Although evidence exists for the presence of nitrogen ice on its surface, at least mixed with other ices, there is nowhere near the same level of nitrogen as on Pluto and Triton, where it composes more than 98 percent of the crust. The relative lack of nitrogen ice suggests that its supply of nitrogen has somehow been depleted over the age of the Solar System.

The far-infrared (24–70 μm) and submillimeter (70–500 μm) photometry performed by Spitzer and Herschel telescopes revealed that the surface of Makemake is not homogeneous. Although the majority of it is covered by nitrogen and methane ices, where the albedo ranges from 78 to 90%, there are small patches of dark terrain whose albedo is only 2 to 12%, and that make up 3 to 7% of the surface. These studies were made before S/2015 (136472) 1 was discovered; thus, these small dark patches may have instead been the dark surface of the satellite rather than any actual surface features on Makemake.

However, some experiments have refuted these studies. Spectroscopic studies, collected from 2005 to 2008 using the William Herschel Telescope (La Palma, Spain) were analyzed together with other spectra in the literature, as of 2014. They show some degree of variation in the spectral slope, which would be associated with different abundance of the complex organic materials, byproducts of the irradiation of the ices present on the surface of Makemake. However, the relative ratio of the two dominant icy species, methane, and nitrogen, remains quite stable on the surface revealing a low degree of inhomogeneity in the ice component. These results were recently confirmed when the Telescopio Nazionale Galileo acquired new visible and near infra-red spectra for Makemake, between 2006 and 2013, that covered nearly 80% of its surface; this study found that the variations in the spectra were negligible, suggesting that Makemake's surface may indeed be homogenous. Based on optical observations conducted between 2006 and 2017, Hromakina et al. concluded that Makemake's lightcurve was likely due to heterogeneities across its surface, but that the variations (of the order of 3%) were too small to have been detected spectroscopically.

More research shows that Eris, Pluto and Makemake show signs of noticeable geothermal activity and could likely harbor active subsurface oceans. Rebuking the earlier speculations about distant celestial objects being uninhabitable.

= Atmosphere =

Makemake was expected to have an atmosphere similar to that of Pluto but with a lower surface pressure. However, on 23 April 2011, Makemake passed in front of an 18th-magnitude star and abruptly blocked its light. The results showed that Makemake presently lacks a substantial atmosphere and placed an upper limit of 0.4–1.2 millipascals on the pressure at its surface.

The presence of methane and possibly nitrogen suggests that Makemake could have a transient atmosphere similar to that of Pluto near its perihelion. Nitrogen, if present, will be the dominant component of it. The existence of an atmosphere also provides a natural explanation for the nitrogen depletion: because the gravity of Makemake is weaker than that of Pluto, Eris and Triton, a large amount of nitrogen was probably lost via atmospheric escape; methane is lighter than nitrogen, but has significantly lower vapor pressure at temperatures prevalent at the surface of Makemake (32–36 K), which hinders its escape; the result of this process is a higher relative abundance of methane. However, studies of Pluto's atmosphere by New Horizons suggest that methane, not nitrogen, is the dominant escaping gas, suggesting that the reasons for Makemake's absence of nitrogen may be more complicated.

Satellite

File:Makemake moon Hubble two images.jpg

{{main|S/2015 (136472) 1}}

Makemake has a single discovered moon, S/2015 (136472) 1 and nicknamed MK2. It was seen 21,000 km (13,000 mi) from the dwarf planet, and its diameter is estimated at {{convert|175|km|4=-1|abbr=on}} (for an assumed albedo of 4%).

class="wikitable"

|+Makemake System

!Name

!Diameter (km)

!Discovery Date

Makemake

|≈ 1430

|March 31, 2005

S/2015 (136472) 1

|≈ 175

|April 27, 2015

Exploration

File:Makemake New Horizons.gif spacecraft in October 2007]]

Makemake was observed from afar by the New Horizons spacecraft in October 2007 and January 2017, from distances of 52 AU and 70 AU, respectively. The spacecraft's outbound trajectory permitted observations of Makemake at high phase angles that are otherwise unobtainable from Earth, enabling the determination of the light scattering properties and phase curve behavior of Makemake's surface.

It has been calculated that a flyby mission to Makemake could take just over 16 years using a Jupiter gravity assist, based on a launch date of 24 August 2036. Makemake would be approximately 52 AU from the Sun when the spacecraft arrives.

See also

Notes

{{reflist|group=lower-alpha}}

References

{{reflist|30em|refs=

{{cite web |type=2019-05-12 last obs |title=JPL Small-Body Database Browser: 136472 Makemake ({{mp|2005 FY|9}}) |work=NASA Jet Propulsion Laboratory |url=https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=136472 |access-date=2020-02-20 |archive-date=2019-06-16 |archive-url=https://web.archive.org/web/20190616154758/https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=136472 |url-status=live }}

{{cite web |title=(136472) Makemake = 2005 FY9 |url=https://www.minorplanetcenter.net/db_search/show_object?object_id=136472 |work=Minor Planet Center |publisher=International Astronomical Union |access-date=2020-11-01 |archive-date=2021-12-22 |archive-url=https://web.archive.org/web/20211222200522/https://www.minorplanetcenter.net/db_search/show_object?object_id=136472 |url-status=live }}

{{cite web |title=Asteroid 136472 Makemake (2005 FY9) |work=HORIZONS Web-Interface |publisher=JPL Solar System Dynamics |url=https://ssd.jpl.nasa.gov/horizons/app.html#/?spk=20136472 |access-date=2024-08-09 }}

{{cite web |title=AstDys (136472) Makemake Ephemerides |publisher=Department of Mathematics, University of Pisa, Italy |url=http://newton.spacedys.com/astdys/index.php?pc=1.1.3.0&n=Makemake |access-date=2019-04-09 |archive-date=2019-09-25 |archive-url=https://web.archive.org/web/20190925030925/http://newton.spacedys.com/astdys/index.php?pc=1.1.3.0&n=Makemake |url-status=live }}

{{cite journal |author1=McGranaghan, R. |author2=Sagan, B. |author3=Dove, G. |author4=Tullos, A. |author5=Lyne, J. E. |author6=Emery, J. P. |date=2011 |title=A Survey of Mission Opportunities to Trans-Neptunian Objects |journal=Journal of the British Interplanetary Society |volume=64 |pages=296–303 |bibcode=2011JBIS...64..296M}}

{{cite web |url=http://science.slashdot.org/story/08/07/14/0147250/makemake-becomes-the-newest-dwarf-planet |title=Makemake Becomes the Newest Dwarf Planet |publisher=Slashdot |date=July 13, 2008 |access-date=November 23, 2012 |archive-date=June 10, 2019 |archive-url=https://web.archive.org/web/20190610221656/http://science.slashdot.org/story/08/07/14/0147250/makemake-becomes-the-newest-dwarf-planet |url-status=live }}

{{cite web |date=2008-11-07 |title=Dwarf Planets and their Systems |work=Working Group for Planetary System Nomenclature (WGPSN) |url=http://planetarynames.wr.usgs.gov/append7.html#DwarfPlanets |access-date=2008-07-13 |publisher=U.S. Geological Survey |archive-date=2007-07-14 |archive-url=https://web.archive.org/web/20070714225312/http://planetarynames.wr.usgs.gov/append7.html#DwarfPlanets |url-status=live }}

{{cite news |title=His Stellar Discovery Is Eclipsed |author=Thomas H. Maugh II |author2=John Johnson Jr. |name-list-style=amp |work=Los Angeles Times |url=https://www.latimes.com/archives/la-xpm-2005-oct-16-me-planet16-story.html |access-date=2008-07-14 |date=2005-10-16 |archive-date=2017-02-21 |archive-url=https://web.archive.org/web/20170221203505/http://articles.latimes.com/2005/oct/16/local/me-planet16 |url-status=live }}

{{cite journal |doi=10.1086/501524 |last1=Brown |first1=M. E. |author-link=Michael E. Brown |last2=Van Dam |first2=M. A. |last3=Bouchez |first3=A. H. |last4=Le Mignant |first4=D. |last5=Campbell |first5=R. D. |last6=Chin |first6=J. C. Y. |last7=Conrad |first7=A. |last8=Hartman |first8=S. K. |last9=Johansson |first9=E. M. |last10=Lafon |first10=R. E. |last11=Rabinowitz |first11=D. L. Rabinowitz |last12=Stomski |first12=P. J. Jr. |last13=Summers |first13=D. M. |last14=Trujillo |first14=C. A. |last15=Wizinowich |first15=P. L. |year=2006 |title=Satellites of the Largest Kuiper Belt Objects |journal=The Astrophysical Journal |volume=639 |issue=1 |pages=L43–L46 |arxiv=astro-ph/0510029 |bibcode=2006ApJ...639L..43B |s2cid=2578831 |url=http://web.gps.caltech.edu/~mbrown/papers/ps/gab.pdf |access-date=2011-10-19 |ref={{sfnRef |Brown Van Dam et al. |2006}} |archive-date=2013-11-03 |archive-url=https://web.archive.org/web/20131103094637/http://web.gps.caltech.edu/~mbrown/papers/ps/gab.pdf |url-status=live }}

{{cite web |title=Mike Brown's Planets: What's in a name? (part 2) |last=Brown |first=Mike |publisher=California Institute of Technology |date=2008 |url=http://www.mikebrownsplanets.com/2008/07/whats-in-name-part-2.html |access-date=2008-07-14 |archive-date=2020-05-13 |archive-url=https://web.archive.org/web/20200513105137/http://www.mikebrownsplanets.com/2008/07/whats-in-name-part-2.html |url-status=live }}

{{cite web |title=Asteroid 136108 (2003 EL61) |work=HORIZONS Web-Interface |publisher=JPL Solar System Dynamics |url=http://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=sb&sstr=2003EL61 |access-date=2008-08-04 |archive-date=2008-07-18 |archive-url=https://web.archive.org/web/20080718195959/http://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=sb&sstr=2003EL61 |url-status=live }}

{{cite web |title=MPEC 2009-P26 :Distant Minor Planets (2009 AUG. 17.0 TT) |publisher=IAU Minor Planet Center |date=2009-08-07 |url=https://minorplanetcenter.net/mpec/K09/K09P26.html |access-date=2009-08-28 |archive-date=2018-10-02 |archive-url=https://web.archive.org/web/20181002032710/https://minorplanetcenter.net/mpec/K09/K09P26.html |url-status=live }}

{{Cite journal |last1=Lorenzi |first1=V. |last2=Pinilla-Alonso |first2=N. |last3=Licandro |first3=J. |date=2015-05-01 |title=Rotationally resolved spectroscopy of dwarf planet (136472) Makemake |journal=Astronomy & Astrophysics |language=en |volume=577 |pages=A86 |doi=10.1051/0004-6361/201425575 |issn=0004-6361 |arxiv=1504.02350 |bibcode=2015A&A...577A..86L|s2cid=119253105 }}

{{Cite journal |last1=Perna |first1=D. |last2=Hromakina |first2=T. |last3=Merlin |first3=F. |last4=Ieva |first4=S. |last5=Fornasier |first5=S. |last6=Belskaya |first6=I. |last7=Epifani |first7=E. Mazzotta |date=2017-04-21 |title=The very homogeneous surface of the dwarf planet Makemake |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=466 |issue=3 |pages=3594–3599 |doi=10.1093/mnras/stw3272 |doi-access=free |issn=0035-8711 |bibcode=2017MNRAS.466.3594P |url=https://hal.sorbonne-universite.fr/hal-01526061/file/stw3272.pdf |access-date=2019-07-01 |archive-date=2021-08-31 |archive-url=https://web.archive.org/web/20210831190833/https://hal.sorbonne-universite.fr/hal-01526061/file/stw3272.pdf |url-status=live }}

{{cite journal |author=E.L. Schaller |author2=M.E. Brown |title=Volatile Loss and Retention on Kuiper Belt Objects |date=2007-04-10 |journal=The Astrophysical Journal |volume=659 |issue=1 |pages=L61–L64 |doi=10.1086/516709 |bibcode=2007ApJ...659L..61S |s2cid=10782167 |url=https://authors.library.caltech.edu/17521/1/SCHAapjl07a.pdf |access-date=2020-04-12 |archive-date=2020-08-04 |archive-url=https://web.archive.org/web/20200804014215/https://authors.library.caltech.edu/17521/1/SCHAapjl07a.pdf |url-status=live }}

{{cite journal |title=Surface Ices and the Atmospheric Composition of Pluto |author=Tobias C. Owen |journal=Science |date=1993-08-06 |volume=261 |issue=5122 |pages=745–748 |doi=10.1126/science.261.5122.745 |bibcode=1993Sci...261..745O |pmid=17757212 |name-list-style=vanc |author2=Ted L. Roush |display-authors=2 |last3=Cruikshank |first3=D. P. |last4=Elliot |first4=J. L. |last5=Young |first5=L. A. |last6=De Bergh |first6=C. |last7=Schmitt |first7=B. |last8=Geballe |first8=T. R. |last9=Brown |first9=R. H.|s2cid=6039266 |url=https://pdfs.semanticscholar.org/bf97/96ebcb8fd07633e0af0f3cd8a0814e8475da.pdf |archive-url=https://web.archive.org/web/20200219053243/https://pdfs.semanticscholar.org/bf97/96ebcb8fd07633e0af0f3cd8a0814e8475da.pdf |archive-date=2020-02-19 }}

{{cite journal |title=Evidence of N2-ice on the surface of the icy dwarf Planet 136472 (2005 FY9) |author=S.C. Tegler |display-authors=4 |author2=W.M. Grundy |author3=F. Vilas |author4=W. Romanishin |author5=D.M. Cornelison |author6=G.J. Consolmagno |name-list-style=amp |journal=Icarus |volume=195 |issue=2 |date=June 2008 |pages=844–850 |doi=10.1016/j.icarus.2007.12.015 |bibcode=2008Icar..195..844T |arxiv=0801.3115 |s2cid=119113255 }}

{{cite journal |title=Irradiation products on the dwarf planet Makemake |author=M. E. Brown

|author2=E. L. Schaller |author3=G. A. Blake |journal=The Astronomical Journal |volume=149 |issue=3 |page=105 |year=2015 |doi=10.1088/0004-6256/149/3/105 |bibcode=2015AJ....149..105B |s2cid=39534359

|url=http://pdfs.semanticscholar.org/0a61/555601e2bd748b32852e12277183602517f4.pdf |archive-url=https://web.archive.org/web/20200412141821/http://pdfs.semanticscholar.org/0a61/555601e2bd748b32852e12277183602517f4.pdf |archive-date=2020-04-12 }}

{{cite journal |title=The methane ice rich surface of large TNO 2005 FY9: a Pluto-twin in the trans-neptunian belt? |author=J. Licandro |display-authors=4 |author2=N. Pinilla-Alonso |author3=M. Pedani |author4=E. Oliva |author5=G. P. Tozzi |author6=W. M. Grundy |journal=Astronomy and Astrophysics |date=2006 |volume=445 |issue=3 |doi=10.1051/0004-6361:200500219 |pages=L35–L38 |bibcode=2006A&A...445L..35L|s2cid=56343540 |doi-access=free }}

{{cite journal |author=S. C. Tegler |display-authors=4 |author2=W. M. Grundy |author3=W. Romanishin |author4=G. J. Consolmagno |author5=K. Mogren |author6=F. Vilas |title=Optical Spectroscopy of the Large Kuiper Belt Objects 136472 (2005 FY9) and 136108 (2003 EL61) |date=2007-01-08 |volume=133 |issue=2 |pages=526–530 |doi=10.1086/510134 |journal=The Astronomical Journal |bibcode=2007AJ....133..526T |arxiv=astro-ph/0611135 |s2cid=10673951 }}

{{Cite journal |last1=Ortiz |first1=J. L. |last2=Sicardy |first2=B. |last3=Braga-Ribas |first3=F. |last4=Alvarez-Candal |first4=A. |last5=Lellouch |first5=E. |last6=Duffard |first6=R. |last7=Pinilla-Alonso |first7=N. |last8=Ivanov |first8=V. D. |last9=Littlefair |first9=S. P. |last10=Camargo |doi=10.1038/nature11597 |first10=J. I. B. |last11=Assafin |first11=M. |last12=Unda-Sanzana |first12=E. |last13=Jehin |first13=E. |last14=Morales |first14=N. |last15=Tancredi |first15=G. |last16=Gil-Hutton |first16=R. |last17=De La Cueva |first17=I. |last18=Colque |first18=J. P. |last19=Da Silva Neto |first19=D. N. |last20=Manfroid |first20=J. |last21=Thirouin |first21=A. |last22=Gutiérrez |first22=P. J. |last23=Lecacheux |first23=J. |last24=Gillon |first24=M. |last25=Maury |first25=A. |last26=Colas |first26=F. |last27=Licandro |first27=J. |last28=Mueller |first28=T. |last29=Jacques |first29=C. |last30=Weaver |first30=D. |title=Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation |journal=Nature |volume=491 |issue=7425 |pages=566–569 |year=2012 |pmid=23172214 |bibcode=2012Natur.491..566O |hdl=2268/142198 |s2cid=4350486 |url=http://orbi.ulg.ac.be/handle/2268/142198 |access-date=2019-07-01 |archive-date=2023-02-08 |archive-url=https://web.archive.org/web/20230208231950/https://orbi.uliege.be/handle/2268/142198 |url-status=live |hdl-access=free }} (ESO 21 November 2012 press release: [http://www.eso.org/public/news/eso1246/ Dwarf Planet Makemake Lacks Atmosphere] {{Webarchive|url=https://web.archive.org/web/20170118211929/http://www.eso.org/public/news/eso1246/ |date=2017-01-18 }})

{{cite news |title=Dwarf Planet Makemake Lacks Atmosphere |url=http://www.eso.org/public/news/eso1246/ |access-date=23 November 2012 |newspaper=ESO Press Release |archive-date=18 January 2017 |archive-url=https://web.archive.org/web/20170118211929/http://www.eso.org/public/news/eso1246/ |url-status=live }}

{{Cite journal |author1=A. N. Heinze |author2=D. deLahunta |title=The rotation period and light-curve amplitude of Kuiper belt dwarf planet 136472 Makemake (2005 FY9) |journal=The Astronomical Journal |volume=138 |issue=2 |year=2009 |pages=428–438 |doi=10.1088/0004-6256/138/2/428|bibcode=2009AJ....138..428H |doi-access=free }}

{{cite web |title=Mike Brown's Planets: Make-make |last=Brown |first=Mike |publisher=California Institute of Technology |date=2008 |url=http://www.mikebrownsplanets.com/2008/07/make-make.html |access-date=2008-07-14 |archive-date=2008-07-17 |archive-url=https://web.archive.org/web/20080717010831/http://www.mikebrownsplanets.com/2008/07/make-make.html |url-status=live }}

{{cite journal |doi=10.1051/0004-6361/200913031 |last1=Snodgrass |first1=C. |last2=Carry |first2=B. |last3=Dumas |first3=C. |last4=Hainaut |first4=O. |title=Characterisation of candidate members of (136108) Haumea's family |journal=Astronomy and Astrophysics |volume=511 |pages=A72 |date=February 2010 |arxiv=0912.3171 |bibcode=2010A&A...511A..72S |s2cid=62880843 }}

{{cite journal |author=T.L. Lim |author2=J. Stansberry |author3=T.G. Müller |title="TNOs are Cool": A survey of the trans-Neptunian region III. Thermophysical properties of 90482 Orcus and 136472 Makemake |date=2010 |volume=518 |page=L148 |doi=10.1051/0004-6361/201014701 |journal=Astronomy and Astrophysics |bibcode=2010A&A...518L.148L |arxiv=1202.3657}}

{{cite journal

|last=Levison |first=H. F. |author-link=Harold F. Levison |author2=Morbidelli, A. |title=The formation of the Kuiper belt by the outward transport of bodies during Neptune's migration |journal=Nature |volume=426 |pages=419–421 |date=2003-11-27 |doi=10.1038/nature02120 |pmid=14647375 |issue=6965 |bibcode=2003Natur.426..419L |s2cid=4395099 }}

{{cite journal |author=M.E. Brown |year=2013 |arxiv=1304.1041v1 |title=On the size, shape, and density of dwarf planet Makemake |journal=The Astrophysical Journal Letters |volume=767 |issue=1 |pages=L7(5pp) |doi=10.1088/2041-8205/767/1/L7 |bibcode=2013ApJ...767L...7B |s2cid=12937717 }}

{{cite journal |title=Methane and Ethane on the Bright Kuiper Belt Object 2005 FY9 |author=Mike Brown |display-authors=4 |author2=K. M. Barksume |author3=G. L. Blake |author4=E. L. Schaller |author5=D. L. Rabinowitz |author6=H. G. Roe |author7=C. A. Trujillo |name-list-style=amp |journal=The Astronomical Journal |date=2007 |volume=133 |issue=1 |pages=284–289 |doi=10.1086/509734 |bibcode=2007AJ....133..284B |s2cid=12146168 |url=http://authors.library.caltech.edu/7288/1/BROaj07.pdf |access-date=2018-11-04 |archive-date=2022-05-24 |archive-url=https://web.archive.org/web/20220524150449/http://authors.library.caltech.edu/7288/1/BROaj07.pdf |url-status=live }}

{{MW|Makemake}}

{{cite journal |author=Gonzalo Tancredi |author2=Sofia Favre |title=Which are the dwarfs in the Solar System? |date=June 2008 |journal=Icarus |volume=195 |issue=2 |pages=851–862 |url=http://www.lpi.usra.edu/meetings/acm2008/pdf/8261.pdf |doi=10.1016/j.icarus.2007.12.020 |access-date=2008-08-03 |bibcode=2008Icar..195..851T |archive-date=2016-06-03 |archive-url=https://web.archive.org/web/20160603215320/http://www.lpi.usra.edu/meetings/acm2008/pdf/8261.pdf |url-status=live }}

{{cite journal |author=David L. Rabinowitz |author2=Bradley E. Schaefer |author3=Suzanne W. Tourtellotte |title=The Diverse Solar Phase Curves of Distant Icy Bodies. I. Photometric Observations of 18 Trans-Neptunian Objects, 7 Centaurs, and Nereid |journal=The Astronomical Journal |volume=133 |issue=1 |pages=26–43 |date=2007 |doi=10.1086/508931 |arxiv=astro-ph/0605745 |bibcode=2007AJ....133...26R|s2cid=119406900 }}

{{cite press release |publisher=International Astronomical Union (News Release – IAU0806) |title=Fourth dwarf planet named Makemake |author=International Astronomical Union |url=http://www.iau.org/public_press/news/release/iau0806/ |date=2008-07-19 |access-date=2008-07-20 |archive-date=2008-07-23 |archive-url=https://web.archive.org/web/20080723021818/http://www.iau.org/public_press/news/release/iau0806/ |url-status=live }}

{{cite web |author=Michael E. Brown |title=The Dwarf Planets |publisher=California Institute of Technology, Department of Geological Sciences |url=http://web.gps.caltech.edu/~mbrown/dwarfplanets/ |access-date=2008-01-26 |archive-date=2008-01-29 |archive-url=https://web.archive.org/web/20080129195021/http://web.gps.caltech.edu/~mbrown/dwarfplanets/ |url-status=live }}

{{cite journal |author=Jane X. Luu |author2=David C. Jewitt |name-list-style=amp |date=2002 |journal=Annu. Rev. Astron. Astrophys. |volume=40 |issue=1 |pages=63–101 |doi=10.1146/annurev.astro.40.060401.093818 |title=Kuiper Belt Objects: Relics from the Accretion Disk of the Sun |url=http://www.gsmt.noao.edu/gsmt_swg/SWG_Apr03/The_Kuiper_Belt.pdf |access-date=2008-08-04 |bibcode=2002ARA&A..40...63L |archive-date=2007-08-09 |archive-url=https://web.archive.org/web/20070809103013/http://www.gsmt.noao.edu/gsmt_swg/SWG_Apr03/The_Kuiper_Belt.pdf }}

{{cite web |title=Classical Kuiper Belt Objects (CKBOs) |author=David Jewitt |publisher=University of Hawaii |url=http://www2.ess.ucla.edu/~jewitt/kb/kb-classical.html |date=February 2000 |access-date=2008-08-04 |archive-url=https://web.archive.org/web/20080805020742/http://www.ifa.hawaii.edu/~jewitt/kb/kb-classical.html |archive-date=August 5, 2008}}

{{cite web |url=http://www.ifa.hawaii.edu/publications/preprints/06preprints/Delsanti_06-009.pdf |title=The Solar System Beyond The Planets |author=Audrey Delsanti |author2=David Jewitt |publisher=University of Hawaii |access-date=2008-08-03 |archive-date=2012-10-19 |archive-url=https://web.archive.org/web/20121019203227/http://www.ifa.hawaii.edu/publications/preprints/06preprints/Delsanti_06-009.pdf |url-status=live }}

{{cite web |url=http://www.minorplanetcenter.org/iau/lists/TNOs.html |work=Minor Planet Center |title=List Of Transneptunian Objects |publisher=Harvard-Smithsonian Center for Astrophysics |access-date=2008-08-03 |archive-date=2010-10-27 |archive-url=https://archive.today/20101027133511/http://www.minorplanetcenter.org/iau/lists/TNOs.html |url-status=live }}

{{cite press release |publisher=HubbleSite (News Release no. STScI-2016-18) |title=Hubble Discovers Moon Orbiting the Dwarf Planet Makemake |author=HubbleSite |url=http://hubblesite.org/newscenter/archive/releases/2016/18/full/ |date=2016-04-26 |access-date=2016-04-26 |archive-date=2019-09-29 |archive-url=https://web.archive.org/web/20190929065046/http://hubblesite.org/newscenter/archive/releases/2016/18/full/ |url-status=live }}

{{cite web |title=Clyde W. Tombaugh |work=New Mexico Museum of Space History |url=http://www.nmspacemuseum.org/halloffame/detail.php?id=51 |access-date=2008-06-29 |archive-date=2019-09-25 |archive-url=https://web.archive.org/web/20190925004602/http://www.nmspacemuseum.org/halloffame/detail.php?id=51 |url-status=live }}

{{cite journal |title=Long-term photometric monitoring of the dwarf planet (136472) Makemake |author1=T. A. Hromakina |author2=I. N. Belskaya |author3=Yu. N. Krugly |author4=V. G. Shevchenko |author5=J. L. Ortiz |author6=P. Santos-Sanz |author7=R. Duffard |author8=N. Morales |author9=A. Thirouin |author10=R. Ya. Inasaridze |author11=V. R. Ayvazian |author12=V. T. Zhuzhunadze |author13=D. Perna |author14=V. V. Rumyantsev |author15=I. V. Reva |author16=A. V. Serebryanskiy |author17=A. V. Sergeyev |author18=I. E. Molotov |author19=V. A. Voropaev |author20=S. F. Velichko |journal=Astronomy & Astrophysics |volume=625 |pages=A46 |doi=10.1051/0004-6361/201935274 |arxiv=1904.03679 |date=2019-04-09|bibcode=2019A&A...625A..46H |s2cid=102350991 }}

{{cite web |url=http://www.planetary.org/blogs/guest-blogs/2016/0502-a-moon-for-makemake.html |title=A Moon for Makemake |last=Parker |first=Alex |website=www.planetary.org |date=2016-05-02 |access-date=2016-05-02 |archive-url=https://web.archive.org/web/20181021071304/http://www.planetary.org/blogs/guest-blogs/2016/0502-a-moon-for-makemake.html |archive-date=2018-10-21 }}

{{cite web |author=Marc W. Buie |author-link=Marc W. Buie |date=2008-04-05 |title=Orbit Fit and Astrometric record for 136472 |publisher=SwRI (Space Science Department) |url=http://www.boulder.swri.edu/~buie/kbo/astrom/136472.html |access-date=2008-07-13 |archive-date=2020-05-27 |archive-url=https://web.archive.org/web/20200527191044/https://www.boulder.swri.edu/~buie/kbo/astrom/136472.html |url-status=live }}

{{Cite news |url=http://www.nasa.gov/feature/pluto-s-interaction-with-the-solar-wind-is-unique-study-finds |title=Pluto's Interaction with the Solar Wind is Unique, Study Finds |last=Keeter |first=Bill |date=2016-05-04 |work=NASA |access-date=2017-05-03 |language=en |archive-date=2017-05-18 |archive-url=https://web.archive.org/web/20170518122428/https://www.nasa.gov/feature/pluto-s-interaction-with-the-solar-wind-is-unique-study-finds/ |url-status=live }}

{{Cite news |url=http://www.skyandtelescope.com/astronomy-news/plutos-atmosphere-confounds-researchers-032520166/ |title=Pluto's Atmosphere Confounds Researchers |last=Beatty |first=Kelly |date=2016-03-25 |work=Sky & Telescope |access-date=2017-05-03 |language=en-US |archive-date=2016-04-07 |archive-url=https://web.archive.org/web/20160407162627/http://www.skyandtelescope.com/astronomy-news/plutos-atmosphere-confounds-researchers-032520166/ |url-status=live }}

{{cite journal |last1=Parker |first1=A. H. |last2=Buie |first2=M. W. |last3=Grundy |first3=W. M. |last4=Noll |first4=K. S. |title=Discovery of a Makemakean Moon |date=2016-04-25 |arxiv=1604.07461 |doi=10.3847/2041-8205/825/1/L9 |volume=825 |issue=1 |journal=The Astrophysical Journal |page=L9 |bibcode=2016ApJ...825L...9P |s2cid=119270442 |doi-access=free }}

{{cite conference

|title=Makemake's thermal emission reconsidered

|url=https://meetingorganizer.copernicus.org/EPSC-DPS2019/EPSC-DPS2019-86-1.pdf

|first1=Anikó

|last1=Takács-Farkas

|first2=Csaba

|last2=Kiss

|first3=Thomas

|last3=Müller

|first4=Michael

|last4=Mommert

|date=September 2019

|conference=EPSC-DPS Joint Meeting 2019

|publisher=European Planetary Science Congress

|volume=13

|access-date=2020-06-16

|archive-date=2020-08-03

|archive-url=https://web.archive.org/web/20200803161844/https://meetingorganizer.copernicus.org/EPSC-DPS2019/EPSC-DPS2019-86-1.pdf

|url-status=live

}}

{{cite journal

|display-authors = etal

|first1 = Anne J. |last1 = Verbiscer

|first2 = Paul |last2 = Helfenstein

|first3 = Simon B. |last3 = Porter

|first4 = Susan D. |last4 = Benecchi

|first5 = J. J. |last5 = Kavelaars

|first6 = Tod R. |last6 = Lauer

|title = The Diverse Shapes of Dwarf Planet and Large KBO Phase Curves Observed from New Horizons

|journal = The Planetary Science Journal

|date = April 2022

|volume = 3

|issue = 4

|id = 95

|page = 31

|doi-access = free

|doi = 10.3847/PSJ/ac63a6

|bibcode = 2022PSJ.....3...95V}}

{{cite web

|title=Horizons Batch for 136472 Makemake (2005 FY9) on 2186-Nov-17

|publisher=JPL Horizons

|type=Perihelion occurs when rdot flips from negative to positive

|url=https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%27Makemake%27&START_TIME=%272186-11-01%27&STOP_TIME=%272186-11-30%27&STEP_SIZE=%273%20hours%27&QUANTITIES=%2719%27

|access-date=2021-09-25

|archive-date=2021-09-25

|archive-url=https://web.archive.org/web/20210925102147/https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%27Makemake%27&START_TIME=%272186-11-01%27&STOP_TIME=%272186-11-30%27&STEP_SIZE=%273%20hours%27&QUANTITIES=%2719%27

|url-status=live

}}

}}