Malcev-admissible algebra

In algebra, a Malcev-admissible algebra, introduced by {{harvs|txt|last=Myung|year=1983}}, is a (possibly non-associative) algebra that becomes a Malcev algebra under the bracket [a, b] = ab − ba. Examples include alternative algebras, Malcev algebras and Lie-admissible algebras.

See also

References

  • {{Citation

| last1=Albert | first1=A. Adrian

| year=1948

| title=Power-associative rings

| journal=Transactions of the American Mathematical Society

| volume=64 | issue=3

| pages=552–593

| doi=10.2307/1990399

| jstor=1990399

| mr=0027750

| doi-access=

}}

  • {{eom|id=Lie-admissible_algebra}}
  • {{citation

|last=Myung |first=Hyo Chul

|year=1980

|title=Flexible Malʹcev-admissible algebras

|journal=Hadronic Journal

|volume=4 |issue= 6|pages=2033–2136

|mr=0637500

}}

  • {{citation

|last=Myung |first=Hyo Chul

|year=1986

|title=Malcev-admissible algebras

|url=https://books.google.com/books?id=PBvvAAAAMAAJ

|series=Progress in Mathematics

|volume=64

|publisher=Birkhäuser Boston |place=Boston, MA

|isbn= 0-8176-3345-6

|mr=0885089

|doi=10.1007/978-1-4899-6661-2

}}

Category:Non-associative algebra