Malcev-admissible algebra
In algebra, a Malcev-admissible algebra, introduced by {{harvs|txt|last=Myung|year=1983}}, is a (possibly non-associative) algebra that becomes a Malcev algebra under the bracket [a, b] = ab − ba. Examples include alternative algebras, Malcev algebras and Lie-admissible algebras.
See also
References
- {{Citation
| last1=Albert | first1=A. Adrian
| year=1948
| title=Power-associative rings
| journal=Transactions of the American Mathematical Society
| volume=64 | issue=3
| pages=552–593
| doi=10.2307/1990399
| jstor=1990399
| mr=0027750
| doi-access=
}}
- {{eom|id=Lie-admissible_algebra}}
- {{citation
|last=Myung |first=Hyo Chul
|year=1980
|title=Flexible Malʹcev-admissible algebras
|journal=Hadronic Journal
|volume=4 |issue= 6|pages=2033–2136
|mr=0637500
}}
- {{citation
|last=Myung |first=Hyo Chul
|year=1986
|title=Malcev-admissible algebras
|url=https://books.google.com/books?id=PBvvAAAAMAAJ
|series=Progress in Mathematics
|volume=64
|publisher=Birkhäuser Boston |place=Boston, MA
|isbn= 0-8176-3345-6
|mr=0885089
|doi=10.1007/978-1-4899-6661-2
}}