Malliavin derivative

{{One source|date=April 2025}}

In mathematics, the Malliavin derivative{{cite web |title=Malliavin derivative of Ito process |url=https://mathoverflow.net/questions/344522/malliavin-derivative-of-ito-process |website=mathoverflow.net |access-date=15 April 2025 |language=en}} is a notion of derivative in the Malliavin calculus. Intuitively, it is the notion of derivative appropriate to paths in classical Wiener space, which are "usually" not differentiable in the usual sense. {{Citation needed|date=August 2011}}

Definition

Let H be the Cameron–Martin space, and C_{0} denote classical Wiener space:

:H := \{ f \in W^{1,2} ([0, T]; \mathbb{R}^{n}) \;|\; f(0) = 0 \} := \{ \text{paths starting at 0 with first derivative in } L^{2} \};

:C_{0} := C_{0} ([0, T]; \mathbb{R}^{n}) := \{ \text{continuous paths starting at 0} \};

By the Sobolev embedding theorem, H \subset C_0. Let

:i : H \to C_{0}

denote the inclusion map.

Suppose that F : C_{0} \to \mathbb{R} is Fréchet differentiable. Then the Fréchet derivative is a map

:\mathrm{D} F : C_{0} \to \mathrm{Lin} (C_{0}; \mathbb{R});

i.e., for paths \sigma \in C_{0}, \mathrm{D} F (\sigma)\; is an element of C_{0}^{*}, the dual space to C_{0}\;. Denote by \mathrm{D}_{H} F(\sigma)\; the continuous linear map H \to \mathbb{R} defined by

:\mathrm{D}_{H} F (\sigma) := \mathrm{D} F (\sigma) \circ i : H \to \mathbb{R},

sometimes known as the H-derivative. Now define \nabla_{H} F : C_{0} \to H to be the adjoint of \mathrm{D}_{H} F\; in the sense that

:\int_0^T \left(\partial_t \nabla_H F(\sigma)\right) \cdot \partial_t h := \langle \nabla_{H} F (\sigma), h \rangle_{H} = \left( \mathrm{D}_{H} F \right) (\sigma) (h) = \lim_{t \to 0} \frac{F (\sigma + t i(h)) - F(\sigma)}{t}.

Then the Malliavin derivative \mathrm{D}_{t} is defined by

:\left( \mathrm{D}_{t} F \right) (\sigma) := \frac{\partial}{\partial t} \left( \left( \nabla_{H} F \right) (\sigma) \right).

The domain of \mathrm{D}_{t} is the set \mathbf{F} of all Fréchet differentiable real-valued functions on C_{0}\;; the codomain is L^{2} ([0, T]; \mathbb{R}^{n}).

The Skorokhod integral \delta\; is defined to be the adjoint of the Malliavin derivative:

:\delta := \left( \mathrm{D}_{t} \right)^{*} : \operatorname{image} \left( \mathrm{D}_{t} \right) \subseteq L^{2} ([0, T]; \mathbb{R}^{n}) \to \mathbf{F}^{*} = \mathrm{Lin} (\mathbf{F}; \mathbb{R}).

See also

References