Manin–Drinfeld theorem

{{short description|The difference of two cusps of a modular curve has finite order in the Jacobian variety}}

In mathematics, the Manin–Drinfeld theorem, proved by {{harvs|txt|last=Manin|year=1972|authorlink=Yuri I. Manin}} and {{harvs|txt|last=Drinfeld|authorlink=Vladimir Drinfeld|year=1973}}, states that the difference of two cusps of a modular curve has finite order in the Jacobian variety.

References

  • {{Citation | last1=Drinfeld | first1=V. G. | title=Two theorems on modular curves |mr=0318157 | year=1973 | journal=Akademija Nauk SSSR. Funkcionalnyi Analiz i ego Priloženija | issn=0374-1990 | volume=7 | issue=2 | pages=83–84}}
  • {{Citation | last1=Manin | first1=Ju. I. | title=Parabolic points and zeta functions of modular curves |mr=0314846 | year=1972 | journal=Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya | issn=0373-2436 | volume=36 | issue=1 | pages=19–66| doi=10.1070/IM1972v006n01ABEH001867 | bibcode=1972IzMat...6...19M }}

{{DEFAULTSORT:Manin-Drinfeld theorem}}

Category:Modular forms

Category:Theorems in number theory

{{numtheory-stub}}