Marchenko–Pastur distribution
{{Short description|Distribution of singular values of large rectangular random matrices}}
File:Marchenko-Pastur distribution.svg
In the mathematical theory of random matrices, the Marchenko–Pastur distribution, or Marchenko–Pastur law, describes the asymptotic behavior of singular values of large rectangular random matrices. The theorem is named after Soviet Ukrainian mathematicians Volodymyr Marchenko and Leonid Pastur who proved this result in 1967.
If denotes a random matrix whose entries are independent identically distributed random variables with mean 0 and variance , let
:
and let be the eigenvalues of (viewed as random variables). Finally, consider the random measure
:
counting the number of eigenvalues in the subset included in .
Theorem. {{Citation needed|date=January 2023|reason=Some discussion as to the veracity of the formula given}} Assume that so that the ratio . Then (in weak* topology in distribution), where
:
\nu(A),& \text{if } 0\leq \lambda \leq 1,
\end{cases}
and
:
with
:
The Marchenko–Pastur law also arises as the free Poisson law in free probability theory, having rate and jump size .
Moments
For each , its -th moment is{{sfnm|1a1=Bai|1a2=Silverstein|1y=2010|1loc=Section 3.1.1}}
:
Some transforms of this law
The Stieltjes transform is given by
:
for complex numbers {{mvar|z}} of positive imaginary part, where the complex square root is also taken to have positive imaginary part.{{sfnm|1a1=Bai|1a2=Silverstein|1y=2010|1loc=Section 3.3.1}} It satisfies the quadratic equationThe Stieltjes transform can be repackaged in the form of the R-transform, which is given by{{sfnm|1a1=Tulino|1a2=Verdú|1y=2004|1loc=Section 2.2}}
:
The S-transform is given by{{sfnm|1a1=Tulino|1a2=Verdú|1y=2004|1loc=Section 2.2}}
:
For the case of , the -transform {{sfnm|1a1=Tulino|1a2=Verdú|1y=2004|1loc=Section 2.2}} is given by where satisfies the Marchenko-Pastur law.
:
where
For exact analysis of high dimensional regression in the proportional asymptotic regime, a convenient form is often which simplifies to
:
The following functions and , where satisfies the Marchenko-Pastur law, show up in the limiting Bias and Variance respectively, of ridge regression and other regularized linear regression problems. One can show that and .
Application to correlation matrices
For the special case of correlation matrices, we know that
and . This bounds the probability mass over the interval defined by
:
Since this distribution describes the spectrum of random matrices with mean 0, the eigenvalues of correlation matrices that fall inside of the aforementioned interval could be considered spurious or noise. For instance, obtaining a correlation matrix of 10 stock returns calculated over a 252 trading days period would render . Thus, out of 10 eigenvalues of said correlation matrix, only the values higher than 1.43 would be considered significantly different from random.
See also
References
{{Reflist}}
{{refbegin}}
- {{cite book|mr=2567175|last1=Bai|first1=Zhidong|last2=Silverstein|first2=Jack W.|title=Spectral analysis of large dimensional random matrices|edition=Second edition of 2006 original|year=2010|publisher=Springer|location=New York|series=Springer Series in Statistics|isbn=978-1-4419-0660-1|doi=10.1007/978-1-4419-0661-8|zbl=1301.60002}}
- {{cite journal |last1=Epps |first1=Brenden |last2=Krivitzky |first2=Eric M. |year=2019 |title=Singular value decomposition of noisy data: mode corruption |journal=Experiments in Fluids |volume=60 |issue=8 |pages=1–30 |doi=10.1007/s00348-019-2761-y |bibcode=2019ExFl...60..121E |s2cid=198436243 }}
- {{cite journal |last1=Götze |first1=F. |last2=Tikhomirov |first2=A. |year=2004 |title=Rate of convergence in probability to the Marchenko–Pastur law |journal=Bernoulli |volume=10 |issue=3 |pages=503–548 |doi=10.3150/bj/1089206408 |doi-access=free }}
- {{cite journal |last1=Marchenko |first1=V. A. |last2=Pastur |first2=L. A. |year=1967 |title=Распределение собственных значений в некоторых ансамблях случайных матриц |trans-title=Distribution of eigenvalues for some sets of random matrices |language=ru |journal=Mat. Sb. |series=N.S. |volume=72 |issue=114:4 |pages=507–536 |doi=10.1070/SM1967v001n04ABEH001994 |bibcode=1967SbMat...1..457M }} [http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=4101&option_lang=eng Link to free-access pdf of Russian version]
- {{cite book |last1=Nica |first1=A. |authorlink2=Roland Speicher |last2=Speicher |first2=R. |year=2006 |title=Lectures on the Combinatorics of Free probability theory |url=https://archive.org/details/lecturesoncombin00nica |url-access=limited |publisher=Cambridge Univ. Press |isbn=0-521-85852-6 |pages=[https://archive.org/details/lecturesoncombin00nica/page/n220 204], 368 }} [http://rolandspeicher.com/literature/nica-speicher/ Link to free download] [https://www.google.com/search?tbs=bks:1&q=isbn:0521858526 Another free access site]
- {{cite journal|last1=Tulino|first1=Antonia M.|author1-link=Antonia Tulino|last2=Verdú|first2=Sergio|title=Random matrix theory and wireless communications|journal=Foundations and Trends in Communications and Information Theory|volume=1|issue=1|pages=1–182|doi=10.1561/0100000001|year=2004|zbl=1143.94303|author-link2=Sergio Verdú}}
- {{cite journal |last1=Zhang |first1=W. |last2=Abreu |first2=G. |last3=Inamori |first3=M. |last4=Sanada |first4=Y. |year=2011 |title=Spectrum sensing algorithms via finite random matrices |journal=IEEE Transactions on Communications |volume=60 |issue=1 |pages=164–175 |doi=10.1109/TCOMM.2011.112311.100721 |s2cid=206642535 }}
{{refend}}
{{ProbDistributions|continuous-semi-infinite}}
{{DEFAULTSORT:Marchenko-Pastur distribution}}