Mark Cushman

{{Short description|American chemist}}

Mark S. Cushman is an American chemist, whose primary research is in the area of medicinal chemistry. He completed his pre-pharmacy studies at Fresno State College (now California State University, Fresno) in 1965. He then attended the University of California San Francisco (as a University of California Regents Scholar), earning a Pharm.D. in 1969 and a Ph.D. in Medicinal Chemistry in 1973. Thereafter, he performed postdoctoral training in the laboratory of George Büchi, Ph.D., at the Massachusetts Institute of Technology (MIT). There, his research focused on the discovery and development of new synthetic methodologies,{{Cite journal|last1=Buchi|first1=George|last2=Cushman|first2=Mark|last3=Wuest|first3=Hans|date=1974-08-01|title=Conversion of allylic alcohols to homologous amides by N,N-dimethylformamide acetals|url=https://doi.org/10.1021/ja00824a041|journal=Journal of the American Chemical Society|volume=96|issue=17|pages=5563–5565|doi=10.1021/ja00824a041|bibcode=1974JAChS..96.5563B |issn=0002-7863|url-access=subscription}} and the isolation and structural characterization of mycotoxins from Aspergillus niger.{{Cite journal|last1=Anderegg|first1=Robert J.|last2=Biemann|first2=Klaus|last3=Buechi|first3=George|last4=Cushman|first4=Mark|date=1976-05-01|title=Malformin C, a new metabolite of Aspergillus niger|url=https://doi.org/10.1021/ja00427a051|journal=Journal of the American Chemical Society|volume=98|issue=11|pages=3365–3370|doi=10.1021/ja00427a051|pmid=1262650|bibcode=1976JAChS..98.3365A |issn=0002-7863|url-access=subscription}} In 1975, he joined the Department of Medicinal Chemistry and Molecular Pharmacology (at the time, Department of Medicinal Chemistry and Pharmacognosy) at Purdue University. From 1983 to 1984, Prof. Cushman was a Senior Fulbright Scholar at Munich Technical University working in the laboratory of Professor Adelbert Bacher. His sabbatical work dealt with the design and synthesis of probes to elucidate key aspects of the biosynthesis of riboflavin (vitamin B2).{{Cite journal|last1=Cushman|first1=Mark|last2=Patrick|first2=Donald A.|last3=Bacher|first3=Adelbert|last4=Scheuring|first4=Johannes|date=1991-07-01|title=Synthesis of epimeric 6,7-bis(trifluoromethyl)-8-ribityllumazine hydrates. Stereoselective interaction with the light riboflavin synthase of Bacillus subtilis|url=https://doi.org/10.1021/jo00015a009|journal=The Journal of Organic Chemistry|volume=56|issue=15|pages=4603–4608|doi=10.1021/jo00015a009|issn=0022-3263|url-access=subscription}} Currently he holds the rank of Distinguished Professor Emeritus of Medicinal Chemistry at Purdue University. He has mentored 40 graduate students, 59 postdoctoral researchers, and 5 visiting scholars. He has published 348 papers and holds 41 patents. His work has ~17,000 citations with an h-index of 69. His most cited papers had 471, 403, and 299 citations as of August 2021.{{Cite web|title=Mark S. Cushman|url=https://scholar.google.com/citations?user=c8gKO8MAAAAJ&hl=en|accessdate=August 24, 2021}} He has made seminal contributions to the fields of synthetic and medicinal chemistry including the development of new synthetic methodologies, the synthesis of natural products, and the preparation of antivirals, antibacterials, and anticancer agents, and mechanism probes to understand the function of over thirty macromolecular targets. One of his main scientific contributions is the development of the indenoisoquinolines, molecules that inhibit the action of toposiomerase I (Top1) and stabilize the G-quadruplex in the Myc promoter.{{Cite journal|last1=Wang|first1=Kai-Bo|last2=Elsayed|first2=Mohamed S. A.|last3=Wu|first3=Guanhui|last4=Deng|first4=Nanjie|last5=Cushman|first5=Mark|last6=Yang|first6=Danzhou|date=2019-07-17|title=Indenoisoquinoline Topoisomerase Inhibitors Strongly Bind and Stabilize the MYC Promoter G-Quadruplex and Downregulate MYC|url=https://doi.org/10.1021/jacs.9b02679|journal=Journal of the American Chemical Society|volume=141|issue=28|pages=11059–11070|doi=10.1021/jacs.9b02679|issn=0002-7863|pmc=7307421|pmid=31283877|bibcode=2019JAChS.14111059W }} Three indenoisoquinolines designed and synthesized by his research group at Purdue University [indotecan (LMP 400), indimitecan (LMP 776), and LMP 744] demonstrated potent anticancer activity in vivo and have completed phase I clinical trials at the National Institutes of Health.{{Cite journal|last1=Pommier|first1=Yves|last2=Cushman|first2=Mark|last3=Doroshow|first3=James H.|date=2018-12-18|title=Novel clinical indenoisoquinoline topoisomerase I inhibitors: a twist around the camptothecins|journal=Oncotarget|volume=9|issue=99|pages=37286–37288|doi=10.18632/oncotarget.26466|issn=1949-2553|pmc=6324668|pmid=30647868}}

Personal life

Mark Cushman was born on August 20, 1945, in the city of Fresno, California.  A main influence during his formative years was his maternal grandfather, Stanley Borleske, who taught engineering and mathematics at Fresno State College. Mr. Borleske also worked as head football, basketball, and baseball coach at Fresno State College. Besides instilling his love for football, his grandfather influenced traits such as coaching/mentoring, hard-work, a special attention to detail, planning, ethics, and love for learning. These attributes have been the hallmarks of Professor Cushman's character.{{Cite journal|last=Conda-Sheridan|first=Martin|date=2019|title=Editorial page, special issue honoring Professor Mark Cushman|journal=Medicinal Research Reviews|language=en|volume=39|issue=4|pages=1233–1234|doi=10.1002/med.21583|pmid=31194276|issn=1098-1128|doi-access=free}} 

The Castagnoli-Cushman reaction

File:Indeno-1.png

In the 1970's, while working in the group of Neal Castagnoli, Jr., Ph.D., he reported and studied in detail the condensation of cyclic anhydrides with imines{{Cite journal|last1=Castagnoli|first1=Neal|last2=Cushman|first2=Mark|date=November 1971|title=Condensation of succinic anhydrides with Schiff bases. Scope and mechanism|url=http://dx.doi.org/10.1021/jo00821a029|journal=The Journal of Organic Chemistry|volume=36|issue=22|pages=3404–3406|doi=10.1021/jo00821a029|pmid=5132298|issn=0022-3263|url-access=subscription}} (work that was based on a previous report by Castagnoli{{Cite journal|last=Castagnoli|first=Neal|date=1969-10-01|title=Condensation of succinic anhydride with N-benzylidene-N-methylamine. Stereoselective synthesis of trans- and cis-1-methyl-4-carboxy-5-phenyl-2-pyrrolidinone|url=https://doi.org/10.1021/jo01262a081|journal=The Journal of Organic Chemistry|volume=34|issue=10|pages=3187–3189|doi=10.1021/jo01262a081|pmid=5811404|issn=0022-3263|url-access=subscription}}). This reaction is currently known as the Castagnoli-Cushman reaction. One of its first applications was for the preparation of nitrogen analogues of tetrahydrocannabinol, a pharmacologically active natural product isolated from Cannabis sativa.{{Cite journal|last1=Cushman|first1=M.|last2=Castagnoli|first2=N.|date=1974-05-31|title=Synthesis of pharmacologically active nitrogen analogs of the tetrahydrocannabinols|url=https://pubmed.ncbi.nlm.nih.gov/4833507/|journal=The Journal of Organic Chemistry|volume=39|issue=11|pages=1546–1550|doi=10.1021/jo00924a021|issn=0022-3263|pmid=4833507}} This versatile transformation has been used to generate polysubstituted lactam carboxylic acids and to prepare benzophenanthridine and protoberberine alkaloids, and hundreds of indenoisoquinolines.{{Cite journal|last1=Mikheyev|first1=Alexander|last2=Kantin|first2=Grigory|last3=Krasavin|first3=Mikhail|date=May 2018|title=Aldazines in the Castagnoli–Cushman Reaction|url=http://www.thieme-connect.de/DOI/DOI?10.1055/s-0037-1609375|journal=Synthesis|language=en|volume=50|issue=10|pages=2076–2086|doi=10.1055/s-0037-1609375|s2cid=103885937 |issn=0039-7881|url-access=subscription}}{{Cite journal|last1=Howard|first1=Sara Y.|last2=Di Maso|first2=Michael J.|last3=Shimabukuro|first3=Kristin|last4=Burlow|first4=Noah P.|last5=Tan|first5=Darlene Q.|last6=Fettinger|first6=James C.|last7=Malig|first7=Thomas C.|last8=Hein|first8=Jason E.|last9=Shaw|first9=Jared T.|date=2021-08-05|title=Mechanistic Investigation of Castagnoli–Cushman Multicomponent Reactions Leading to a Three-Component Synthesis of Dihydroisoquinolones|url=https://doi.org/10.1021/acs.joc.1c01163|journal=The Journal of Organic Chemistry|volume=86|issue=17|pages=11599–11607|doi=10.1021/acs.joc.1c01163|pmid=34351161|s2cid=236927425|issn=0022-3263|url-access=subscription}}{{Cite journal|last1=Firsov|first1=Andrei|last2=Chupakhin|first2=Evgeny|last3=Dar’in|first3=Dmitry|last4=Bakulina|first4=Olga|last5=Krasavin|first5=Mikhail|date=2019-03-15|title=Three-Component Castagnoli–Cushman Reaction of 3-Arylglutaconic Acids with Aromatic Aldehydes and Amines Delivers Rare 4,6-Diaryl-1,6-dihydropyridin-2(3H)-ones|url=https://doi.org/10.1021/acs.orglett.9b00171|journal=Organic Letters|volume=21|issue=6|pages=1637–1640|doi=10.1021/acs.orglett.9b00171|pmid=30794425|s2cid=73506357|issn=1523-7060|url-access=subscription}} A general scheme of the Cushman-Castagnoli reaction, applied to the synthesis of a model indenoisoquinoline, is shown to the right. Later, the conditions were optimized and include the formation of an acyl chloride followed by condensation using AlCl3.{{Cite journal|last1=Morrell|first1=Andrew|last2=Antony|first2=Smitha|last3=Kohlhagen|first3=Glenda|last4=Pommier|first4=Yves|last5=Cushman|first5=Mark|date=2004-07-16|title=Synthesis of nitrated indenoisoquinolines as topoisomerase I inhibitors|url=https://www.sciencedirect.com/science/article/pii/S0960894X04006572|journal=Bioorganic & Medicinal Chemistry Letters|language=en|volume=14|issue=14|pages=3659–3663|doi=10.1016/j.bmcl.2004.05.022|pmid=15203138|issn=0960-894X|url-access=subscription}}{{Cite journal|last1=Conda-Sheridan|first1=Martin|last2=Reddy|first2=P. V. Narasimha|last3=Morrell|first3=Andrew|last4=Cobb|first4=Brooklyn T.|last5=Marchand|first5=Christophe|last6=Agama|first6=Keli|last7=Chergui|first7=Adel|last8=Renaud|first8=Amélie|last9=Stephen|first9=Andrew G.|last10=Bindu|first10=Lakshman K.|last11=Pommier|first11=Yves|date=2012-12-21|title=Synthesis and Biological Evaluation of Indenoisoquinolines That Inhibit Both Tyrosyl-DNA Phosphodiesterase I (Tdp1) and Topoisomerase I (Top1)|journal=Journal of Medicinal Chemistry|volume=56|issue=1|pages=182–200|doi=10.1021/jm3014458|issn=0022-2623|pmc=3542538|pmid=23259865}}

Development of the indenoisoquinolines

File:Indenoiso2.png

Dr. Cushman is the world leader in the design and synthesis of the indenoisoquinolines.{{Cite journal|last=Cushman|first=Mark|date=2021-12-08|title=Design and Synthesis of Indenoisoquinolines Targeting Topoisomerase I and Other Biological Macromolecules for Cancer Chemotherapy|url=https://doi.org/10.1021/acs.jmedchem.1c01491|journal=Journal of Medicinal Chemistry|volume=64|issue=24|pages=17572–17600|doi=10.1021/acs.jmedchem.1c01491|pmid=34879200|s2cid=245065452|issn=0022-2623|url-access=subscription}} These drugs, which were discovered serendipitously during a synthesis of the antileukemic agent nitidine chloride, can eradicate cancer cells. The seminal paper describing the synthesis of the molecules, using the Castagnoli-Cushman Reaction, was published in The Journal of Organic Chemistry.{{Cite journal|last1=Cushman|first1=Mark|last2=Cheng|first2=Leung|date=1978-09-01|title=Stereoselective oxidation by thionyl chloride leading to the indeno[1,2-c]isoquinoline system|url=https://doi.org/10.1021/jo00413a036|journal=The Journal of Organic Chemistry|volume=43|issue=19|pages=3781–3783|doi=10.1021/jo00413a036|issn=0022-3263|url-access=subscription}}  Alternatively, the indenoisoquinolines can be prepared by reacting a benz[d]indeno[1,2-b]pyran-5,11-dione (I) with an amine (II).

Initially, it was discovered the indenoisoquinolines inhibited the action of the topoisomerase I enzyme.{{Cite journal|last1=Kohlhagen|first1=Glenda|last2=Paull|first2=Kenneth D.|last3=Cushman|first3=Mark|last4=Nagafuji|first4=Pamela|last5=Pommier|first5=Yves|date=1998-07-01|title=Protein-Linked DNA Strand Breaks Induced by NSC 314622, a Novel Noncamptothecin Topoisomerase I Poison|url=https://molpharm.aspetjournals.org/content/54/1/50|journal=Molecular Pharmacology|language=en|volume=54|issue=1|pages=50–58|doi=10.1124/mol.54.1.50|issn=0026-895X|pmid=9658189|url-access=subscription}}{{Cite journal|last1=Antony|first1=Smitha|last2=Jayaraman|first2=Muthusamy|last3=Laco|first3=Gary|last4=Kohlhagen|first4=Glenda|last5=Kohn|first5=Kurt W.|last6=Cushman|first6=Mark|last7=Pommier|first7=Yves|date=2003-11-01|title=Differential Induction of Topoisomerase I-DNA Cleavage Complexes by the Indenoisoquinoline MJ-III-65 (NSC 706744) and Camptothecin: Base Sequence Analysis and Activity against Camptothecin- Resistant Topoisomerases I|url=https://cancerres.aacrjournals.org/content/63/21/7428|journal=Cancer Research|language=en|volume=63|issue=21|pages=7428–7435|issn=0008-5472|pmid=14612542}} Later, it was found these molecules can also affect other targets including the retinoid X receptor (RXR),{{Cite journal|last1=Park|first1=Eun-Jung|last2=Kondratyuk|first2=Tamara P.|last3=Morrell|first3=Andrew|last4=Kiselev|first4=Evgeny|last5=Conda-Sheridan|first5=Martin|last6=Cushman|first6=Mark|last7=Ahn|first7=Soyoun|last8=Choi|first8=Yongsoo|last9=White|first9=Jerry J.|last10=van Breemen|first10=Richard B.|last11=Pezzuto|first11=John M.|date=April 2011|title=Induction of retinoid X receptor activity and consequent up-regulation of p21WAF1/CIP1 by indenoisoquinolines in MCF7 cells|journal=Cancer Prevention Research (Philadelphia, Pa.)|volume=4|issue=4|pages=592–607|doi=10.1158/1940-6207.CAPR-10-0004|issn=1940-6207|pmc=5554444|pmid=21464033}} poly [ADP-ribose] polymerase 1 (PARP-1),{{Cite journal|last1=Jagtap|first1=Prakash G.|last2=Baloglu|first2=Erkan|last3=Southan|first3=Garry J.|last4=Mabley|first4=Jon G.|last5=Li|first5=Hongshan|last6=Zhou|first6=Jing|last7=van Duzer|first7=John|last8=Salzman|first8=Andrew L.|last9=Szabó|first9=Csaba|date=2005-08-01|title=Discovery of Potent Poly(ADP-ribose) Polymerase-1 Inhibitors from the Modification of Indeno[1,2-c]isoquinolinone|url=https://doi.org/10.1021/jm0502891|journal=Journal of Medicinal Chemistry|volume=48|issue=16|pages=5100–5103|doi=10.1021/jm0502891|pmid=16078828|issn=0022-2623|url-access=subscription}} topoisomerase II,{{Cite journal|last1=Marzi|first1=Laetitia|last2=Sun|first2=Yilun|last3=Huang|first3=Shar-yin N.|last4=James|first4=Amy|last5=Difilippantonio|first5=Simone|last6=Pommier|first6=Yves|date=2020-08-01|title=The Indenoisoquinoline LMP517: A Novel Antitumor Agent Targeting both TOP1 and TOP2|journal=Molecular Cancer Therapeutics|language=en|volume=19|issue=8|pages=1589–1597|doi=10.1158/1535-7163.MCT-19-1064|issn=1535-7163|pmid=32430490|pmc=7415565}} estrogen receptor,{{Cite journal|last1=Tang|first1=Zhichao|last2=Wu|first2=Chengzhe|last3=Wang|first3=Tianlin|last4=Lao|first4=Kejing|last5=Wang|first5=Yejun|last6=Liu|first6=Linyi|last7=Muyaba|first7=Moses|last8=Xu|first8=Pei|last9=He|first9=Conghui|last10=Luo|first10=Guoshun|last11=Qian|first11=Zhouyang|date=2016-08-08|title=Design, synthesis and evaluation of 6-aryl-indenoisoquinolone derivatives dual targeting ERα and VEGFR-2 as anti-breast cancer agents|url=https://www.sciencedirect.com/science/article/pii/S0223523416303221|journal=European Journal of Medicinal Chemistry|language=en|volume=118|pages=328–339|doi=10.1016/j.ejmech.2016.04.029|pmid=27176944|issn=0223-5234|url-access=subscription}} vascular endothelial growth factor-2 (VEGFR-2), hypoxia-inducible factor 1-alpha (HIF-1a),{{Cite journal|last1=Xu|first1=Xiaoli|last2=Liu|first2=Fang|last3=Zhang|first3=Shengmiao|last4=Jia|first4=Jianmin|last5=Li|first5=Zhiyu|last6=Guo|first6=Xiaoke|last7=Yang|first7=Yong|last8=Sun|first8=Haopeng|last9=You|first9=Qidong|date=2013-10-01|title=Indenoisoquinoline derivatives as topoisomerase I inhibitors that suppress angiogenesis by affecting the HIF signaling pathway|url=https://www.sciencedirect.com/science/article/pii/S0753332213000802|journal=Biomedicine & Pharmacotherapy|language=en|volume=67|issue=8|pages=715–722|doi=10.1016/j.biopha.2013.06.004|pmid=23932721|issn=0753-3322|url-access=subscription}} tyrosyl DNA phosphodiesterases (TDP) 1 and 2, and G-quadruplexes.

In addition, the Cushman group and collaborators have reported that indenoisoquinolines could potentially treat other diseases including visceral Leishmaniasis, African trypanosomiasis (sleeping sickness), and Angelman syndrome.

Total synthesis

File:Total Synthesis Cushman.png

Another main contribution of Mark Cushman and his group deals with the synthesis of various natural products and pharmacologically active synthetic substances. Some of the compounds his group prepared include: the antileukemic agent nitidine chloride (III);{{Cite journal|last1=Cushman|first1=Mark|last2=Cheng|first2=Leung|date=January 1978|title=Total synthesis of nitidine chloride|url=https://pubs.acs.org/doi/pdf/10.1021/jo00396a024|journal=The Journal of Organic Chemistry|volume=43|issue=2|pages=286–288|doi=10.1021/jo00396a024|issn=0022-3263|url-access=subscription}} corydaline,{{Cite journal|last1=Cushman|first1=Mark|last2=Dekow|first2=Frederick W.|date=1978-01-01|title=A total synthesis of corydaline|url=https://dx.doi.org/10.1016/0040-4020%2878%2980162-8|journal=Tetrahedron|language=en|volume=34|issue=10|pages=1435–1439|doi=10.1016/0040-4020(78)80162-8|issn=0040-4020|url-access=subscription}} which possesses antinociceptive and antiallergic activities among others; thalictricavine,{{Cite journal|last1=Cushman|first1=Mark|last2=Dekow|first2=Frederick W.|date=1979-02-01|title=Synthesis of (.+-.)-thalictricavine, berlambine, and (.+-.)-canadine from a common intermediate|url=https://doi.org/10.1021/jo01317a020|journal=The Journal of Organic Chemistry|volume=44|issue=3|pages=407–409|doi=10.1021/jo01317a020|issn=0022-3263|url-access=subscription}} an inhibitor of human acetylcholinesterase and butyrylcholinesteras;{{Cite journal|last1=Chlebek|first1=Jakub|last2=Korábečný|first2=Jan|last3=Doležal|first3=Rafael|last4=Štěpánková|first4=Šárka|last5=Pérez|first5=Daniel I.|last6=Hošťálková|first6=Anna|last7=Opletal|first7=Lubomír|last8=Cahlíková|first8=Lucie|last9=Macáková|first9=Kateřina|last10=Kučera|first10=Tomáš|last11=Hrabinová|first11=Martina|date=January 2019|title=In Vitro and In Silico Acetylcholinesterase Inhibitory Activity of Thalictricavine and Canadine and Their Predicted Penetration across the Blood-Brain Barrier|journal=Molecules|language=en|volume=24|issue=7|pages=1340|doi=10.3390/molecules24071340|pmid=30959739|pmc=6480038|doi-access=free}} berlambine; (±)-canadine; (+)-thalictrifoline;{{Cite journal|last1=Iwasa|first1=Kinuko|last2=Gupta|first2=Yash Pal|last3=Cushman|first3=Mark|date=1981-01-01|title=The absolute configurations of (+)-thalictrifoline and (+)-corydalic acid methyl ester. Total synthesis of (+)-thalictrifoline.|url=https://www.sciencedirect.com/science/article/pii/S0040403901828999|journal=Tetrahedron Letters|language=en|volume=22|issue=25|pages=2333–2336|doi=10.1016/S0040-4039(01)82899-9|issn=0040-4039|url-access=subscription}} cosalane (IV),{{Cite journal|last1=Cushman|first1=Mark|last2=Golebiewski|first2=W. Marek|last3=McMahon|first3=James B.|last4=Buckheit|first4=Robert W.|last5=Clanton|first5=David J.|last6=Weislow|first6=Owen|last7=Haugwitz|first7=Rudiger D.|last8=Bader|first8=John P.|last9=Graham|first9=Lisa|last10=Rice|first10=William G.|date=September 1994|title=Design, Synthesis, and Biological Evaluation of Cosalane, a Novel Anti-HIV Agent Which Inhibits Multiple Features of Virus Reproduction|url=https://pubs.acs.org/doi/pdf/10.1021/jm00045a008|journal=Journal of Medicinal Chemistry|volume=37|issue=19|pages=3040–3050|doi=10.1021/jm00045a008|pmid=7932526|issn=0022-2623|url-access=subscription}} a molecule that inhibits HIV by acting on various targets;{{Cite journal|last1=Zhan|first1=Peng|last2=Li|first2=Zhenyu|last3=Liu|first3=Xinyong|date=September 2010|title=Cosalane and its analogues: a unique class of anti-HIV agents|url=https://pubmed.ncbi.nlm.nih.gov/20540707/|journal=Mini Reviews in Medicinal Chemistry|volume=10|issue=10|pages=966–976|doi=10.2174/138955710792007222|issn=1875-5607|pmid=20540707}} (±) chelidonine,{{Cite journal|last1=Cushman|first1=Mark|last2=Choong|first2=Tung-Chung|last3=Valko|first3=Joseph T.|last4=Koleck|first4=Mary P.|date=1980-12-01|title=Total synthesis of (.+-.)-chelidonine|url=https://doi.org/10.1021/jo01313a011|journal=The Journal of Organic Chemistry|volume=45|issue=25|pages=5067–5073|doi=10.1021/jo01313a011|issn=0022-3263|url-access=subscription}} a non-specific cholinesterase inhibitor; ammosamide B (V),{{Cite journal|last1=Reddy|first1=P. V. Narasimha|last2=Banerjee|first2=Biplab|last3=Cushman|first3=Mark|date=2010-07-02|title=Efficient Total Synthesis of Ammosamide B|url=https://doi.org/10.1021/ol101215x|journal=Organic Letters|volume=12|issue=13|pages=3112–3114|doi=10.1021/ol101215x|issn=1523-7060|pmc=2894265|pmid=20515072}} a cytotoxic natural product that targets myosin;{{Cite journal|last1=Hughes|first1=Chambers C.|last2=MacMillan|first2=John B.|last3=Gaudêncio|first3=Susana P.|last4=Fenical|first4=William|last5=La Clair|first5=James J.|date=2009|title=Ammosamides A and B Target Myosin|journal=Angewandte Chemie International Edition|volume=48|issue=4|pages=728–732|doi=10.1002/anie.200804107|issn=1521-3773|pmc=2820877|pmid=19097126}} lavendustin A (VI),{{Cite journal|last1=Devraj|first1=Rajesh|last2=Cushman|first2=Mark|date=1996-01-01|title=A Versatile Solid Phase Synthesis of Lavendustin A and Certain Biologically Active Analogs|url=https://doi.org/10.1021/jo961719l|journal=The Journal of Organic Chemistry|volume=61|issue=26|pages=9368–9373|doi=10.1021/jo961719l|issn=0022-3263|url-access=subscription}} a tyrosine kinase inhibitor;{{Cite journal|last1=Onoda|first1=Toshihiko|last2=Iinuma|first2=Hironobu|last3=Sasaki|first3=Yumi|last4=Hamada|first4=Masa|last5=Isshiki|first5=Kunio|last6=Naganawa|first6=Hiroshi|last7=Takeuchi|first7=Tomio|last8=Tatsuta|first8=Kuniaki|last9=Umezawa|first9=Kazuo|date=1989-11-01|title=Isolation of a Novel Tyrosine Kinase Inhibitor, Lavendustin A, from Streptomyces griseolavendus|url=https://doi.org/10.1021/np50066a009|journal=Journal of Natural Products|volume=52|issue=6|pages=1252–1257|doi=10.1021/np50066a009|pmid=2614420|bibcode=1989JNAtP..52.1252O |issn=0163-3864|url-access=subscription}} and (+)- and (–)-corynoline.{{Cite journal|last1=Cushman|first1=Mark|last2=Abbaspour|first2=Aziz|last3=Gupta|first3=Yash Pal|date=1983-05-01|title=Total synthesis of (.+-.)-14-epicorynoline, (.+-.)-corynoline, and (.+-.)-6-oxocorynoline|url=https://doi.org/10.1021/ja00347a057|journal=Journal of the American Chemical Society|volume=105|issue=9|pages=2873–2879|doi=10.1021/ja00347a057|bibcode=1983JAChS.105.2873C |issn=0002-7863|url-access=subscription}}{{Cite journal|last1=Cushman|first1=Mark|last2=Abbaspour|first2=Aziz|last3=Gupta|first3=Yash Pal|date=1990-07-01|title=Total synthesis of (.+-.)-14-epicorynoline, (.+-.)-corynoline, and (.+-.)-6-oxocorynoline [Erratum to document cited in CA98(21):179711f]|url=https://doi.org/10.1021/ja00171a050|journal=Journal of the American Chemical Society|volume=112|issue=15|pages=5898|doi=10.1021/ja00171a050|bibcode=1990JAChS.112.5898C |issn=0002-7863|url-access=subscription}}

Awards and honors

Professor Cushman has received various awards including:

  • Purdue University Chapter of Sigma Xi Research Award in Science and Engineering (2019){{Cite web|title=Purdue University Chapter of Sigma Xi Research Award in Science and Engineering|url=https://www.purdue.edu/research/sigmaxi/awards/index.html}}
  • The Philip S. Portoghese Joint Lectureship sponsored by the Journal of Medicinal Chemistry and the ACS Division of Medicinal Chemistry (2018){{Cite web|title=Philip S. Portoghese Joint Lectureship|url=https://www.acsmedchem.org/?nd=portogheseaward}}
  • The Ole Gisvold Lectureship in Medicinal Chemistry from the Department of Medicinal Chemistry at the University of Minnesota (2018){{Cite web|title=Ole Gisvold Lectureship Award in Medicinal Chemistry|date=8 September 2015|url=https://www.pharmacy.umn.edu/departments/medicinal-chemistry/seminars-and-awards/ole-gisvold-lecture}}
  • Fellow of the National Academy of Inventors (2018){{Cite web|title=National Academy of Inventors Fellow|url=https://academyofinventors.org/wp/skin/search-fellows.php}}
  • Highly Prolific Author by the Journal of Medicinal Chemistry (2017){{Cite web|title=Highly Prolific Author by the Journal of Medicinal Chemistry|url=http://journalstars.acs.org/biological/journal/journal-of-medicinal-chemistry}}
  • Purdue Innovators Hall of Fame Inductee (2016){{Cite web|title=Purdue Innovators Hall of Fame|url=https://www.prf.org/otc/news/innovators-hall-of-fame/2016-2017-inductees.html}}
  • The University of California San Francisco 150th Anniversary Alumni Excellence Award (2015){{Cite web|title=University of California San Francisco 150th Anniversary Alumni Excellence Award|url=https://www.pharmacy.purdue.edu/news/january-20-2015-dr-mark-cushman-receives-ucsf-150th-anniversary-alumni-excellence-award}}
  • The Webster-Sibilsky Lecturer, University of Illinois (2012){{Cite web|title=Webster-Sibilsky Lectureship|url=https://mcp.uic.edu/seminars/seminars-2012-1.htm}}
  • Fellow of the American Association for the Advancement of Science (2012){{Cite web|title=American Association for the Advancement of Science Fellowship Award|url=https://www.aaas.org/sites/default/files/AR_2012_AAAS-fellows.pdf}}
  • Chaney Scholar Award for Exceptional Research (2012){{Cite web|title=Chaney Scholar Award for Exceptional Research|url=https://www.pharmacy.purdue.edu/alumni-friends/awards-recognition/chaney-faculty-scholar-award}}
  • Purdue Cancer Research Award (2004){{Cite web|title=Purdue Cancer Research Award|url=https://www.purdue.edu/newsroom/general/2010/100528BOTOverview.html}}
  • National Institutes of Health Postdoctoral Fellowship (1973–1975)
  • Senior Fulbright Scholar (1983–1984){{Cite web|title=Purdue trustees ratify appointments, honor administrators and athletes, confirm retirement plan change, approve coal purchase|url=https://www.purdue.edu/newsroom/general/2010/100528BOTOverview.html|access-date=2021-08-27|website=www.purdue.edu}}

Others

Dr. Cushman served on the Editorial Advisory Board of The Journal of Organic Chemistry (1999–2004). He also served on the Editorial Advisory Board (2005–2010) and as Associate Editor (2012–2020) of The Journal of Medicinal Chemistry. He is a member of the Board of Directors of Gibson Oncology.

References