Mathieu group M12
{{Short description|Sporadic simple group}}
{{for|general background and history of the Mathieu sporadic groups|Mathieu group}}
{{DISPLAYTITLE:Mathieu group M12}}
{{Group theory sidebar |Finite}}
In the area of modern algebra known as group theory, the Mathieu group M12 is a sporadic simple group of order
: 95,040 = 12{{·}}11{{·}}10{{·}}9{{·}}8 = 26{{·}}33{{·}}5{{·}}11.
History and properties
M12 is one of the 26 sporadic groups and was introduced by {{harvs|txt |authorlink=Émile Léonard Mathieu |last=Mathieu |year1=1861 |year2=1873}}. It is a sharply 5-transitive permutation group on 12 objects. {{harvtxt|Burgoyne|Fong|1968}} showed that the Schur multiplier of M12 has order 2 (correcting a mistake in {{harv|Burgoyne|Fong|1966}} where they incorrectly claimed it has order 1).
The double cover had been implicitly found earlier by {{harvtxt|Coxeter|1958}}, who showed that M12 is a subgroup of the projective linear group of dimension 6 over the finite field with 3 elements.
The outer automorphism group has order 2, and the full automorphism group M12.2 is contained in M24 as the stabilizer of a pair of complementary dodecads of 24 points, with outer automorphisms of M12 swapping the two dodecads.
Representations
{{harvtxt|Frobenius|1904}} calculated the complex character table of M12.
M12 has a strictly 5-transitive permutation representation on 12 points, whose point stabilizer is the Mathieu group M11. Identifying the 12 points with the projective line over the field of 11 elements, M12 is generated by the permutations of PSL2(11) together with the permutation (2,10)(3,4)(5,9)(6,7). This permutation representation preserves a Steiner system S(5,6,12) of 132 special hexads, such that each pentad is contained in exactly 1 special hexad, and the hexads are the supports of the weight 6 codewords of the extended ternary Golay code. In fact M12 has two inequivalent actions on 12 points, exchanged by an outer automorphism; these are analogous to the two inequivalent actions of the symmetric group S6 on 6 points.
The double cover 2.M12 is the automorphism group of the extended ternary Golay code, a dimension 6 length 12 code over the field of order 3 of minimum weight 6. In particular the double cover has an irreducible 6-dimensional representation over the field of 3 elements.
The double cover 2.M12 is the automorphism group of any 12×12 Hadamard matrix.
M12 centralizes an element of order 11 in the monster group, as a result of which it acts naturally on a vertex algebra over the field with 11 elements, given as the Tate cohomology of the monster vertex algebra.
Maximal subgroups
There are 11 conjugacy classes of maximal subgroups of M12, 6 occurring in automorphic pairs, as follows:
class="wikitable"
|+ Maximal subgroups of M12 | ||||
No. | Structure | Order | Index | Comments |
---|---|---|---|---|
1,2 | M11 | align=right|7,920 = 24·32·5·11 | align=right| 12 = 22·3 | two classes, exchanged by an outer automorphism. One is the subgroup fixing a point with orbits of sizes 1 and 11, while the other acts transitively on the 12 points. |
3,4 | S6:2 ≅ M10:2 | align=right|1,440 = 25·32·5 | align=right| 66 = 2·3·11 | two classes, exchanged by an outer automorphism. The outer automorphism group of the symmetric group S6. One class is imprimitive and transitive, acting with 2 blocks of size 6, while the other is the subgroup fixing a pair of points and has orbits of sizes 2 and 10. |
5 | L2(11) | align=right| 660 = 22·3·5·11 | align=right| 144 = 24·32 | doubly transitive on the 12 points |
6,7 | 32:(2.S4) | align=right| 432 = 24·33 | align=right| 220 = 22·5·11 | two classes, exchanged by an outer automorphism. One acts with orbits of sizes 3 and 9, and the other is imprimitive on 4 sets of size 3; isomorphic to the affine group on the space C3 x C3. |
8 | S5 x 2 | align=right| 240 = 24·3·5 | align=right| 396 = 22·32·11 | doubly imprimitive on 6 sets of 2 points; centralizer of a sextuple transposition |
9 | Q8:S4 | align=right| 192 = 26·3 | align=right| 495 = 32·5·11 | orbits of sizes 4 and 8; centralizer of a quadruple transposition (an involution of class 2B) |
10 | 42:(2 x S3) | align=right| 192 = 26·3 | align=right| 495 = 32·5·11 | imprimitive on 3 sets of size 4 |
11 | A4 x S3 | align=right| 72 = 23·32 | align=right|1,320 = 23·3·5·11 | doubly imprimitive, 4 sets of 3 points |
Conjugacy classes
The cycle shape of an element and its conjugate under an outer automorphism are related in the following way: the union of the two cycle shapes is balanced, in other words invariant under changing each n-cycle to an N/n cycle for some integer N.
class="wikitable" style="text-align: right" | ||||
Order | Number | Centralizer | Cycles | Fusion |
---|---|---|---|---|
1 | 1 | 95040 | 112 | |
2 | 396 | 240 | 26 | |
2 | 495 | 192 | 1424 | |
3 | 1760 | 54 | 1333 | |
3 | 2640 | 36 | 34 | |
4 | 2970 | 32 | 2242 | rowspan="2"|Fused under an outer automorphism |
4 | 2970 | 32 | 1442 | |
5 | 9504 | 10 | 1252 | |
6 | 7920 | 12 | 62 | |
6 | 15840 | 6 | 1 2 3 6 | |
8 | 11880 | 8 | 122 8 | rowspan="2"|Fused under an outer automorphism |
8 | 11880 | 8 | 4 8 | |
10 | 9504 | 10 | 2 10 | |
11 | 8640 | 11 | 1 11 | rowspan="2"|Fused under an outer automorphism |
11 | 8640 | 11 | 1 11 |
References
- {{Citation | last1=Adem | first1=Alejandro |author1-link= Alejandro Adem | last2=Maginnis | first2=John | last3=Milgram | first3=R. James | title=The geometry and cohomology of the Mathieu group M₁₂ | doi=10.1016/0021-8693(91)90285-G |mr=1106342 | year=1991 | journal=Journal of Algebra | issn=0021-8693 | volume=139 | issue=1 | pages=90–133| hdl=2027.42/29344 | hdl-access=free }}
- {{Citation | last1=Burgoyne | first1=N. | last2=Fong | first2=Paul | title=The Schur multipliers of the Mathieu groups | url=http://projecteuclid.org/euclid.nmj/1118801786 |mr=0197542 | year=1966 | journal=Nagoya Mathematical Journal | issn=0027-7630 | volume=27 | issue=2 | pages=733–745| doi=10.1017/S0027763000026519 | doi-access=free }}
- {{Citation | last1=Burgoyne | first1=N. | last2=Fong | first2=Paul | title=A correction to: "The Schur multipliers of the Mathieu groups" | url=http://projecteuclid.org/euclid.nmj/1118796952 |mr=0219626 | year=1968 | journal=Nagoya Mathematical Journal | issn=0027-7630 | volume=31 | pages=297–304| doi=10.1017/S0027763000012782 | doi-access=free }}
- {{Citation | last1=Cameron | first1=Peter J. | title=Permutation Groups | publisher=Cambridge University Press | series=London Mathematical Society Student Texts | isbn=978-0-521-65378-7 | year=1999 | volume=45 | url-access=registration | url=https://archive.org/details/permutationgroup0000came }}
- {{Citation | last1=Carmichael | first1=Robert D. | title=Introduction to the theory of groups of finite order | orig-year=1937 | url=https://books.google.com/books?id=McMgAAAAMAAJ | publisher=Dover Publications | location=New York | isbn=978-0-486-60300-1 |mr=0075938 | year=1956}}
- {{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | editor1-last=Powell | editor1-first=M. B. | editor2-last=Higman | editor2-first=Graham | editor2-link=Graham Higman | title=Finite simple groups | chapter-url=https://books.google.com/books?id=TPPkAAAAIAAJ | publisher=Academic Press | location=Boston, MA | series=Proceedings of an Instructional Conference organized by the London Mathematical Society (a NATO Advanced Study Institute), Oxford, September 1969. | isbn=978-0-12-563850-0 |mr=0338152 | year=1971 | chapter=Three lectures on exceptional groups | pages=215–247}} Reprinted in {{harvtxt|Conway|Sloane|1999|loc= 267–298}}
- {{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | last2=Parker | first2=Richard A. | last3=Norton | first3=Simon P. | last4=Curtis | first4=R. T. | last5=Wilson | first5=Robert A. | title=Atlas of finite groups| url=https://books.google.com/books?id=38fEMl2-Fp8C | publisher=Oxford University Press | isbn=978-0-19-853199-9 |mr=827219 | year=1985}}
- {{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | last2=Sloane | first2=Neil J. A. | author2-link=Neil Sloane | title=Sphere Packings, Lattices and Groups | url=https://books.google.com/books?id=upYwZ6cQumoC | publisher=Springer-Verlag | location=Berlin, New York | edition=3rd | series=Grundlehren der Mathematischen Wissenschaften | isbn=978-0-387-98585-5 |mr=0920369 | year=1999 | volume=290 | doi=10.1007/978-1-4757-2016-7}}
- {{Citation | last1=Coxeter | first1=Harold Scott MacDonald | author1-link=Harold Scott MacDonald Coxeter | title=Twelve points in PG(5,3) with 95040 self-transformations | jstor=100667 |mr=0120289 | year=1958 | journal=Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences | issn=0962-8444 | volume=247 | issue=1250 | pages=279–293 | doi=10.1098/rspa.1958.0184| s2cid=121676627 }}
- {{Citation | last1=Curtis | first1=R. T. | editor1-last=Atkinson | editor1-first=Michael D. | title=Computational group theory. Proceedings of the London Mathematical Society symposium held in Durham, July 30–August 9, 1982. | chapter-url=https://books.google.com/books?id=RvvuAAAAMAAJ | publisher=Academic Press | location=Boston, MA | isbn=978-0-12-066270-8 |mr=760669 | year=1984 | chapter=The Steiner system S(5, 6, 12), the Mathieu group M₁₂ and the "kitten" | pages=353–358}}
- {{Citation
|title=The Mathieu groups and their geometries
|first=Hans
|last=Cuypers
|url=http://www.win.tue.nl/~hansc/mathieu.pdf
}}
- {{Citation | last1=Dixon | first1=John D. | last2=Mortimer | first2=Brian | title=Permutation groups | publisher=Springer-Verlag | location=Berlin, New York | series=Graduate Texts in Mathematics | isbn=978-0-387-94599-6 | doi=10.1007/978-1-4612-0731-3 | mr=1409812 | year=1996 | volume=163 | url-access=registration | url=https://archive.org/details/permutationgroup0000dixo }}
- {{Citation | last1=Frobenius | first1=Ferdinand Georg | author1-link=Ferdinand Georg Frobenius | title=Über die Charaktere der mehrfach transitiven Gruppen | publisher= Königliche Akademie der Wissenschaften, Berlin | language=German | id=Reprinted in volume III of his collected works. | year=1904 | journal=Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften | volume=16 | pages=558–571}}
- {{Citation | last1=Gill | first1=Nick | last2=Hughes | first2=Sam | title=The character table of a sharply 5-transitive subgroup of the alternating group of degree 12 | year=2019 | doi=10.22108/IJGT.2019.115366.1531 | journal=International Journal of Group Theory| s2cid=119151614 }}
- {{Citation | last1=Griess | first1=Robert L. Jr. | author1-link=R. L. Griess | title=Twelve sporadic groups | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-540-62778-4 |mr=1707296 | year=1998 | doi=10.1007/978-3-662-03516-0}}
- {{Citation | last1=Hughes | first1=Sam | title=Representation and Character Theory of the Small Mathieu Groups | url=https://nickpgill.github.io/MMath_Sam.Hughes.pdf |year=2018}}
- {{Citation | last1=Mathieu | first1=Émile | title=Mémoire sur l'étude des fonctions de plusieurs quantités, sur la manière de les former et sur les substitutions qui les laissent invariables | url=http://gallica.bnf.fr/ark:/12148/bpt6k16405f/f249 | year=1861 | journal=Journal de Mathématiques Pures et Appliquées | volume=6 | pages=241–323}}
- {{Citation | last1=Mathieu | first1=Émile | title=Sur la fonction cinq fois transitive de 24 quantités | url=http://www.numdam.org/item/?id=JMPA_1873_2_18__25_0 | language=French | jfm=05.0088.01 | year=1873 | journal=Journal de Mathématiques Pures et Appliquées | volume=18 | pages=25–46 }}
- {{Citation | last1=Thompson | first1=Thomas M. | title=From error-correcting codes through sphere packings to simple groups | url=https://books.google.com/books?id=ggqxuG31B3cC | publisher=Mathematical Association of America | series=Carus Mathematical Monographs | isbn=978-0-88385-023-7 |mr=749038 | year=1983 | volume=21}}
- {{Citation | last1=Witt | first1=Ernst | author1-link=Ernst Witt | title=über Steinersche Systeme | doi=10.1007/BF02948948 | year=1938a | journal=Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | issn=0025-5858 | volume=12 | pages=265–275| s2cid=123106337 }}
- {{Citation | last1=Witt | first1=Ernst | author1-link=Ernst Witt | title=Die 5-fach transitiven Gruppen von Mathieu | doi=10.1007/BF02948947 | year=1938b | journal=Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | volume=12 | pages=256–264| s2cid=123658601 }}
External links
- [http://mathworld.wolfram.com/MathieuGroups.html MathWorld: Mathieu Groups]
- [http://brauer.maths.qmul.ac.uk/Atlas/v3/group/M12/ Atlas of Finite Group Representations: M12]
{{DEFAULTSORT:Mathieu Group M12}}