Mathieu group M23

{{Short description|Sporadic simple group}}

{{DISPLAYTITLE:Mathieu group M23}}

{{for|general background and history of the Mathieu sporadic groups|Mathieu group}}

{{Group theory sidebar |Finite}}

In the area of modern algebra known as group theory, the Mathieu group M23 is a sporadic simple group of order

:   10,200,960 = 27{{·}}32{{·}}5{{·}}7{{·}}11{{·}}23

: ≈ 1 × 107.

History and properties

M23 is one of the 26 sporadic groups and was introduced by {{harvs|txt |authorlink=Émile Léonard Mathieu |last=Mathieu |year1=1861 |year2=1873}}. It is a 4-fold transitive permutation group on 23 objects. The Schur multiplier and the outer automorphism group are both trivial.

{{harvtxt|Milgram|2000}} calculated the integral cohomology, and showed in particular that M23 has the unusual property that the first 4 integral homology groups all vanish.

The inverse Galois problem seems to be unsolved for M23. In other words, no polynomial in Z[x] seems to be known to have M23 as its Galois group. The inverse Galois problem is solved for all other sporadic simple groups.

=Construction using finite fields=

Let {{math|F211}} be the finite field with 211 elements. Its group of units has order {{math|211}} − 1 = 2047 = 23 · 89, so it has a cyclic subgroup {{math|C}} of order 23.

The Mathieu group M23 can be identified with the group of {{math|F2}}-linear automorphisms of {{math|F211}} that stabilize {{math|C}}. More precisely, the action of this automorphism group on {{math|C}} can be identified with the 4-fold transitive action of M23 on 23 objects.

Representations

M23 is the point stabilizer of the action of the Mathieu group M24 on 24 points, giving it a 4-transitive permutation representation on 23 points with point stabilizer the Mathieu group M22.

M23 has 2 different rank 3 actions on 253 points. One is the action on unordered pairs with orbit sizes 1+42+210 and point stabilizer M21.2, and the other is the action on heptads with orbit sizes 1+112+140 and point stabilizer 24.A7.

The integral representation corresponding to the permutation action on 23 points decomposes into the trivial representation and a 22-dimensional representation. The 22-dimensional representation is irreducible over any field of characteristic not 2 or 23.

Over the field of order 2, it has two 11-dimensional representations, the restrictions of the corresponding representations of the Mathieu group M24.

Maximal subgroups

There are 7 conjugacy classes of maximal subgroups of M23 as follows:

class="wikitable"

|+ Maximal subgroups of M23

No.StructureOrderIndexComments
1M22align=right|443,520
= 27·32·5·7·11
align=right| 23point stabilizer
2L3(4):2align=right| 40,320
= 27·32·5·7
align=right| 253
= 11·23
has orbits of sizes 21 and 2
324:A7align=right| 40,320
= 27·32·5·7
align=right| 253
= 11·23
has orbits of sizes 7 and 16; stabilizer of W23 block
4A8align=right| 20,160
= 26·32·5·7
align=right| 506
= 2·11·23
has orbits of sizes 8 and 15
5M11align=right| 7,920
= 24·32·5·11
align=right| 1,288
= 23·7·23
has orbits of sizes 11 and 12
6(24:A5):S3 ≅ M20:S3align=right| 5,760
= 27·32·5
align=right| 1,771
= 7·11·23
has orbits of sizes 3 and 20 (5 blocks of 4); one-point stabilizer of the sextet group
723:11align=right| 253
= 11·23
align=right|40,320
= 27·32·5·7
simply transitive

Conjugacy classes

class="wikitable" style="margin: 1em auto;"
Order

! No. elements

! Cycle structure

!

1 = 11123
2 = 23795 = 3 · 5 · 11 · 231728
3 = 356672 = 25 · 7 · 11 · 231536
4 = 22318780 = 22 · 32 · 5 · 7 · 11 · 23132244
5 = 5680064 = 27 · 3 · 7 · 11 · 231354
6 = 2 · 3850080 = 25 · 3 · 5 · 7 · 11 · 231·223262
rowspan="2" | 7 = 7728640 = 26 · 32 · 5 · 11 · 231273rowspan="2"|power equivalent
728640 = 26 · 32 · 5 · 11 · 231273
8 = 231275120 = 24 · 32 · 5 · 7 · 11 · 231·2·4·82
rowspan="2" | 11 = 11927360= 27 · 32 · 5 · 7 · 231·112rowspan="2"|power equivalent
927360= 27 · 32 · 5 · 7 · 231·112
rowspan="2" | 14 = 2 · 7728640= 26 · 32 · 5 · 11 · 232·7·14rowspan="2"|power equivalent
728640= 26 · 32 · 5 · 11 · 232·7·14
rowspan="2" | 15 = 3 · 5680064= 27 · 3 · 7 · 11 · 233·5·15rowspan="2"|power equivalent
680064= 27 · 3 · 7 · 11 · 233·5·15
rowspan="2" | 23 = 23443520= 27 · 32 · 5 · 7 · 1123rowspan="2"|power equivalent
443520= 27 · 32 · 5 · 7 · 1123

References

  • {{Citation | last1=Cameron | first1=Peter J. | title=Permutation Groups | publisher=Cambridge University Press | series=London Mathematical Society Student Texts | isbn=978-0-521-65378-7 | year=1999 | volume=45 | url-access=registration | url=https://archive.org/details/permutationgroup0000came }}
  • {{Citation | last1=Carmichael | first1=Robert D. | title=Introduction to the theory of groups of finite order | orig-year=1937 | url=https://books.google.com/books?id=McMgAAAAMAAJ | publisher=Dover Publications | location=New York | isbn=978-0-486-60300-1 |mr=0075938 | year=1956}}
  • {{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | editor1-last=Powell | editor1-first=M. B. | editor2-last=Higman | editor2-first=Graham | editor2-link=Graham Higman | title=Finite simple groups | chapter-url=https://books.google.com/books?id=TPPkAAAAIAAJ | publisher=Academic Press | location=Boston, MA | series=Proceedings of an Instructional Conference organized by the London Mathematical Society (a NATO Advanced Study Institute), Oxford, September 1969. | isbn=978-0-12-563850-0 |mr=0338152 | year=1971 | chapter=Three lectures on exceptional groups | pages=215–247}} Reprinted in {{harvtxt|Conway|Sloane|1999|loc= 267–298}}
  • {{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | last2=Parker | first2=Richard A. | last3=Norton | first3=Simon P. | last4=Curtis | first4=R. T. | last5=Wilson | first5=Robert A.| url=https://books.google.com/books?id=38fEMl2-Fp8C | title= Atlas of finite groups|publisher=Oxford University Press | isbn=978-0-19-853199-9 |mr=827219 | year=1985}}
  • {{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | last2=Sloane | first2=Neil J. A. | author2-link=Neil Sloane | title=Sphere Packings, Lattices and Groups | url=https://books.google.com/books?id=upYwZ6cQumoC | publisher=Springer-Verlag | location=Berlin, New York | edition=3rd | series=Grundlehren der Mathematischen Wissenschaften | isbn=978-0-387-98585-5 |mr=0920369 | year=1999 | volume=290 | doi=10.1007/978-1-4757-2016-7}}
  • {{Citation

|title=The Mathieu groups and their geometries

|first=Hans

|last=Cuypers

|url=http://www.win.tue.nl/~hansc/mathieu.pdf

}}

  • {{Citation | last1=Dixon | first1=John D. | last2=Mortimer | first2=Brian | title=Permutation groups | publisher=Springer-Verlag | location=Berlin, New York | series=Graduate Texts in Mathematics | isbn=978-0-387-94599-6 | doi=10.1007/978-1-4612-0731-3 | mr=1409812 | year=1996 | volume=163 | url-access=registration | url=https://archive.org/details/permutationgroup0000dixo }}
  • {{Citation | last1=Griess | first1=Robert L. Jr. | author1-link=R. L. Griess | title=Twelve sporadic groups | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-540-62778-4 |mr=1707296 | year=1998 | doi=10.1007/978-3-662-03516-0}}
  • {{Citation | last1=Mathieu | first1=Émile | title=Mémoire sur l'étude des fonctions de plusieurs quantités, sur la manière de les former et sur les substitutions qui les laissent invariables | url=http://gallica.bnf.fr/ark:/12148/bpt6k16405f/f249 | year=1861 | journal=Journal de Mathématiques Pures et Appliquées | volume=6 | pages=241–323}}
  • {{Citation | last1=Mathieu | first1=Émile | title=Sur la fonction cinq fois transitive de 24 quantités | url=http://www.numdam.org/item/?id=JMPA_1873_2_18__25_0 | language=French | jfm=05.0088.01 | year=1873 | journal=Journal de Mathématiques Pures et Appliquées | volume=18 | pages=25–46 }}
  • {{Citation | last1=Milgram | first1=R. James | title=The cohomology of the Mathieu group M₂₃ | doi=10.1515/jgth.2000.008 |mr=1736514 | year=2000 | journal=Journal of Group Theory | issn=1433-5883 | volume=3 | issue=1 | pages=7–26}}
  • {{Citation | last1=Thompson | first1=Thomas M. | title=From error-correcting codes through sphere packings to simple groups | url=https://books.google.com/books?id=ggqxuG31B3cC | publisher=Mathematical Association of America | series=Carus Mathematical Monographs | isbn=978-0-88385-023-7 |mr=749038 | year=1983 | volume=21}}
  • {{Citation | last1=Witt | first1=Ernst | author1-link=Ernst Witt | title=über Steinersche Systeme | doi=10.1007/BF02948948 | year=1938a | journal=Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | issn=0025-5858 | volume=12 | pages=265–275| s2cid=123106337 }}
  • {{Citation | last1=Witt | first1=Ernst | author1-link=Ernst Witt | title=Die 5-fach transitiven Gruppen von Mathieu | doi=10.1007/BF02948947 | year=1938b | journal=Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | volume=12 | pages=256–264| s2cid=123658601 }}