Mathieu group M23
{{Short description|Sporadic simple group}}
{{DISPLAYTITLE:Mathieu group M23}}
{{for|general background and history of the Mathieu sporadic groups|Mathieu group}}
{{Group theory sidebar |Finite}}
In the area of modern algebra known as group theory, the Mathieu group M23 is a sporadic simple group of order
: 10,200,960 = 27{{·}}32{{·}}5{{·}}7{{·}}11{{·}}23
: ≈ 1 × 107.
History and properties
M23 is one of the 26 sporadic groups and was introduced by {{harvs|txt |authorlink=Émile Léonard Mathieu |last=Mathieu |year1=1861 |year2=1873}}. It is a 4-fold transitive permutation group on 23 objects. The Schur multiplier and the outer automorphism group are both trivial.
{{harvtxt|Milgram|2000}} calculated the integral cohomology, and showed in particular that M23 has the unusual property that the first 4 integral homology groups all vanish.
The inverse Galois problem seems to be unsolved for M23. In other words, no polynomial in Z[x] seems to be known to have M23 as its Galois group. The inverse Galois problem is solved for all other sporadic simple groups.
=Construction using finite fields=
Let {{math|F211}} be the finite field with 211 elements. Its group of units has order {{math|211}} − 1 = 2047 = 23 · 89, so it has a cyclic subgroup {{math|C}} of order 23.
The Mathieu group M23 can be identified with the group of {{math|F2}}-linear automorphisms of {{math|F211}} that stabilize {{math|C}}. More precisely, the action of this automorphism group on {{math|C}} can be identified with the 4-fold transitive action of M23 on 23 objects.
Representations
M23 is the point stabilizer of the action of the Mathieu group M24 on 24 points, giving it a 4-transitive permutation representation on 23 points with point stabilizer the Mathieu group M22.
M23 has 2 different rank 3 actions on 253 points. One is the action on unordered pairs with orbit sizes 1+42+210 and point stabilizer M21.2, and the other is the action on heptads with orbit sizes 1+112+140 and point stabilizer 24.A7.
The integral representation corresponding to the permutation action on 23 points decomposes into the trivial representation and a 22-dimensional representation. The 22-dimensional representation is irreducible over any field of characteristic not 2 or 23.
Over the field of order 2, it has two 11-dimensional representations, the restrictions of the corresponding representations of the Mathieu group M24.
Maximal subgroups
There are 7 conjugacy classes of maximal subgroups of M23 as follows:
class="wikitable"
|+ Maximal subgroups of M23 | ||||
No. | Structure | Order | Index | Comments |
---|---|---|---|---|
1 | M22 | align=right|443,520 = 27·32·5·7·11 | align=right| 23 | point stabilizer |
2 | L3(4):2 | align=right| 40,320 = 27·32·5·7 | align=right| 253 = 11·23 | has orbits of sizes 21 and 2 |
3 | 24:A7 | align=right| 40,320 = 27·32·5·7 | align=right| 253 = 11·23 | has orbits of sizes 7 and 16; stabilizer of W23 block |
4 | A8 | align=right| 20,160 = 26·32·5·7 | align=right| 506 = 2·11·23 | has orbits of sizes 8 and 15 |
5 | M11 | align=right| 7,920 = 24·32·5·11 | align=right| 1,288 = 23·7·23 | has orbits of sizes 11 and 12 |
6 | (24:A5):S3 ≅ M20:S3 | align=right| 5,760 = 27·32·5 | align=right| 1,771 = 7·11·23 | has orbits of sizes 3 and 20 (5 blocks of 4); one-point stabilizer of the sextet group |
7 | 23:11 | align=right| 253 = 11·23 | align=right|40,320 = 27·32·5·7 | simply transitive |
Conjugacy classes
class="wikitable" style="margin: 1em auto;" | |||
Order
! No. elements ! Cycle structure ! | |||
---|---|---|---|
1 = 1 | 1 | 123 | |
2 = 2 | 3795 = 3 · 5 · 11 · 23 | 1728 | |
3 = 3 | 56672 = 25 · 7 · 11 · 23 | 1536 | |
4 = 22 | 318780 = 22 · 32 · 5 · 7 · 11 · 23 | 132244 | |
5 = 5 | 680064 = 27 · 3 · 7 · 11 · 23 | 1354 | |
6 = 2 · 3 | 850080 = 25 · 3 · 5 · 7 · 11 · 23 | 1·223262 | |
rowspan="2" | 7 = 7 | 728640 = 26 · 32 · 5 · 11 · 23 | 1273 | rowspan="2"|power equivalent |
728640 = 26 · 32 · 5 · 11 · 23 | 1273 | ||
8 = 23 | 1275120 = 24 · 32 · 5 · 7 · 11 · 23 | 1·2·4·82 | |
rowspan="2" | 11 = 11 | 927360= 27 · 32 · 5 · 7 · 23 | 1·112 | rowspan="2"|power equivalent |
927360= 27 · 32 · 5 · 7 · 23 | 1·112 | ||
rowspan="2" | 14 = 2 · 7 | 728640= 26 · 32 · 5 · 11 · 23 | 2·7·14 | rowspan="2"|power equivalent |
728640= 26 · 32 · 5 · 11 · 23 | 2·7·14 | ||
rowspan="2" | 15 = 3 · 5 | 680064= 27 · 3 · 7 · 11 · 23 | 3·5·15 | rowspan="2"|power equivalent |
680064= 27 · 3 · 7 · 11 · 23 | 3·5·15 | ||
rowspan="2" | 23 = 23 | 443520= 27 · 32 · 5 · 7 · 11 | 23 | rowspan="2"|power equivalent |
443520= 27 · 32 · 5 · 7 · 11 | 23 |
References
- {{Citation | last1=Cameron | first1=Peter J. | title=Permutation Groups | publisher=Cambridge University Press | series=London Mathematical Society Student Texts | isbn=978-0-521-65378-7 | year=1999 | volume=45 | url-access=registration | url=https://archive.org/details/permutationgroup0000came }}
- {{Citation | last1=Carmichael | first1=Robert D. | title=Introduction to the theory of groups of finite order | orig-year=1937 | url=https://books.google.com/books?id=McMgAAAAMAAJ | publisher=Dover Publications | location=New York | isbn=978-0-486-60300-1 |mr=0075938 | year=1956}}
- {{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | editor1-last=Powell | editor1-first=M. B. | editor2-last=Higman | editor2-first=Graham | editor2-link=Graham Higman | title=Finite simple groups | chapter-url=https://books.google.com/books?id=TPPkAAAAIAAJ | publisher=Academic Press | location=Boston, MA | series=Proceedings of an Instructional Conference organized by the London Mathematical Society (a NATO Advanced Study Institute), Oxford, September 1969. | isbn=978-0-12-563850-0 |mr=0338152 | year=1971 | chapter=Three lectures on exceptional groups | pages=215–247}} Reprinted in {{harvtxt|Conway|Sloane|1999|loc= 267–298}}
- {{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | last2=Parker | first2=Richard A. | last3=Norton | first3=Simon P. | last4=Curtis | first4=R. T. | last5=Wilson | first5=Robert A.| url=https://books.google.com/books?id=38fEMl2-Fp8C | title= Atlas of finite groups|publisher=Oxford University Press | isbn=978-0-19-853199-9 |mr=827219 | year=1985}}
- {{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | last2=Sloane | first2=Neil J. A. | author2-link=Neil Sloane | title=Sphere Packings, Lattices and Groups | url=https://books.google.com/books?id=upYwZ6cQumoC | publisher=Springer-Verlag | location=Berlin, New York | edition=3rd | series=Grundlehren der Mathematischen Wissenschaften | isbn=978-0-387-98585-5 |mr=0920369 | year=1999 | volume=290 | doi=10.1007/978-1-4757-2016-7}}
- {{Citation
|title=The Mathieu groups and their geometries
|first=Hans
|last=Cuypers
|url=http://www.win.tue.nl/~hansc/mathieu.pdf
}}
- {{Citation | last1=Dixon | first1=John D. | last2=Mortimer | first2=Brian | title=Permutation groups | publisher=Springer-Verlag | location=Berlin, New York | series=Graduate Texts in Mathematics | isbn=978-0-387-94599-6 | doi=10.1007/978-1-4612-0731-3 | mr=1409812 | year=1996 | volume=163 | url-access=registration | url=https://archive.org/details/permutationgroup0000dixo }}
- {{Citation | last1=Griess | first1=Robert L. Jr. | author1-link=R. L. Griess | title=Twelve sporadic groups | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-540-62778-4 |mr=1707296 | year=1998 | doi=10.1007/978-3-662-03516-0}}
- {{Citation | last1=Mathieu | first1=Émile | title=Mémoire sur l'étude des fonctions de plusieurs quantités, sur la manière de les former et sur les substitutions qui les laissent invariables | url=http://gallica.bnf.fr/ark:/12148/bpt6k16405f/f249 | year=1861 | journal=Journal de Mathématiques Pures et Appliquées | volume=6 | pages=241–323}}
- {{Citation | last1=Mathieu | first1=Émile | title=Sur la fonction cinq fois transitive de 24 quantités | url=http://www.numdam.org/item/?id=JMPA_1873_2_18__25_0 | language=French | jfm=05.0088.01 | year=1873 | journal=Journal de Mathématiques Pures et Appliquées | volume=18 | pages=25–46 }}
- {{Citation | last1=Milgram | first1=R. James | title=The cohomology of the Mathieu group M₂₃ | doi=10.1515/jgth.2000.008 |mr=1736514 | year=2000 | journal=Journal of Group Theory | issn=1433-5883 | volume=3 | issue=1 | pages=7–26}}
- {{Citation | last1=Thompson | first1=Thomas M. | title=From error-correcting codes through sphere packings to simple groups | url=https://books.google.com/books?id=ggqxuG31B3cC | publisher=Mathematical Association of America | series=Carus Mathematical Monographs | isbn=978-0-88385-023-7 |mr=749038 | year=1983 | volume=21}}
- {{Citation | last1=Witt | first1=Ernst | author1-link=Ernst Witt | title=über Steinersche Systeme | doi=10.1007/BF02948948 | year=1938a | journal=Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | issn=0025-5858 | volume=12 | pages=265–275| s2cid=123106337 }}
- {{Citation | last1=Witt | first1=Ernst | author1-link=Ernst Witt | title=Die 5-fach transitiven Gruppen von Mathieu | doi=10.1007/BF02948947 | year=1938b | journal=Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | volume=12 | pages=256–264| s2cid=123658601 }}
External links
- [http://mathworld.wolfram.com/MathieuGroups.html MathWorld: Mathieu Groups]
- [http://brauer.maths.qmul.ac.uk/Atlas/v3/group/M23/ Atlas of Finite Group Representations: M23]
{{DEFAULTSORT:Mathieu Group M23}}