Matrix addition#Kronecker sum

File:Matrix addition qtl2.svg

{{Use American English|date = January 2019}}

{{Short description|Notions of sums for matrices in linear algebra}}

In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together.

For a vector, \vec{v}\!, adding two matrices would have the geometric effect of applying each matrix transformation separately onto \vec{v}\!, then adding the transformed vectors.

:\mathbf{A}\vec{v} + \mathbf{B}\vec{v} = (\mathbf{A} + \mathbf{B})\vec{v}\!

Definition

Two matrices must have an equal number of rows and columns to be added.Elementary Linear Algebra by Rorres Anton 10e p53 In which case, the sum of two matrices A and B will be a matrix which has the same number of rows and columns as A and B. The sum of A and B, denoted {{nowrap|A + B}}, is computed by adding corresponding elements of A and B:{{sfn|Lipschutz|Lipson|2017}}{{sfn|Riley|Hobson|Bence|2006}}

:\begin{align}

\mathbf{A}+\mathbf{B} & = \begin{bmatrix}

a_{11} & a_{12} & \cdots & a_{1n} \\

a_{21} & a_{22} & \cdots & a_{2n} \\

\vdots & \vdots & \ddots & \vdots \\

a_{m1} & a_{m2} & \cdots & a_{mn} \\

\end{bmatrix} +

\begin{bmatrix}

b_{11} & b_{12} & \cdots & b_{1n} \\

b_{21} & b_{22} & \cdots & b_{2n} \\

\vdots & \vdots & \ddots & \vdots \\

b_{m1} & b_{m2} & \cdots & b_{mn} \\

\end{bmatrix} \\

& = \begin{bmatrix}

a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\

a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\

\vdots & \vdots & \ddots & \vdots \\

a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \\

\end{bmatrix} \\

\end{align}\,\!

Or more concisely (assuming that {{nowrap|1=A + B = C}}):{{Cite web|last=Weisstein|first=Eric W.|title=Matrix Addition|url=https://mathworld.wolfram.com/MatrixAddition.html|access-date=2020-09-07|website=mathworld.wolfram.com|language=en}}{{Cite web|title=Finding the Sum and Difference of Two Matrices {{!}} College Algebra|url=https://courses.lumenlearning.com/ivytech-collegealgebra/chapter/finding-the-sum-and-difference-of-two-matrices/|access-date=2020-09-07|website=courses.lumenlearning.com}}

:c_{ij}=a_{ij}+b_{ij}

For example:

:

\begin{bmatrix}

1 & 3 \\

1 & 0 \\

1 & 2

\end{bmatrix}

+

\begin{bmatrix}

0 & 0 \\

7 & 5 \\

2 & 1

\end{bmatrix}

=

\begin{bmatrix}

1+0 & 3+0 \\

1+7 & 0+5 \\

1+2 & 2+1

\end{bmatrix}

=

\begin{bmatrix}

1 & 3 \\

8 & 5 \\

3 & 3

\end{bmatrix}

Similarly, it is also possible to subtract one matrix from another, as long as they have the same dimensions. The difference of A and B, denoted {{nowrap|AB}}, is computed by subtracting elements of B from corresponding elements of A, and has the same dimensions as A and B. For example:

:

\begin{bmatrix}

1 & 3 \\

1 & 0 \\

1 & 2

\end{bmatrix}

-

\begin{bmatrix}

0 & 0 \\

7 & 5 \\

2 & 1

\end{bmatrix}

=

\begin{bmatrix}

1-0 & 3-0 \\

1-7 & 0-5 \\

1-2 & 2-1

\end{bmatrix}

=

\begin{bmatrix}

1 & 3 \\

-6 & -5 \\

-1 & 1

\end{bmatrix}

See also

Notes

{{reflist|2}}

References

  • {{cite book | last1=Lipschutz | first1=Seymour | last2=Lipson | first2=Marc | title=Schaum's Outline of Linear Algebra | edition=6 | publisher=McGraw-Hill Education | year=2017 | isbn=9781260011449}}
  • {{cite book | last1=Riley | first1=K.F. | last2=Hobson | first2=M.P. |last3=Bence |first3=S.J. | title=Mathematical methods for physics and engineering | edition=3 | publisher=Cambridge University Press | year=2006 | doi=10.1017/CBO9780511810763 | isbn=978-0-521-86153-3 | url=https://archive.org/details/mathematicalmeth00rile |url-access=registration}}