Matrix variate Dirichlet distribution

In statistics, the matrix variate Dirichlet distribution is a generalization of the matrix variate beta distribution and of the Dirichlet distribution.

Suppose U_1,\ldots,U_r are p\times p positive definite matrices with I_p-\sum_{i=1}^rU_i also positive-definite, where I_p is the p\times p identity matrix. Then we say that the U_i have a matrix variate Dirichlet distribution, \left(U_1,\ldots,U_r\right)\sim D_p\left(a_1,\ldots,a_r;a_{r+1}\right), if their joint probability density function is

:

\left\{\beta_p\left(a_1,\ldots,a_r,a_{r+1}\right)\right\}^{-1}\prod_{i=1}^{r}\det\left(U_i\right)^{a_i-(p+1)/2}\det\left(I_p-\sum_{i=1}^rU_i\right)^{a_{r+1}-(p+1)/2}

where a_i>(p-1)/2,i=1,\ldots,r+1 and \beta_p\left(\cdots\right) is the multivariate beta function.

If we write U_{r+1}=I_p-\sum_{i=1}^r U_i then the PDF takes the simpler form

:

\left\{\beta_p\left(a_1,\ldots,a_{r+1}\right)\right\}^{-1}\prod_{i=1}^{r+1}\det\left(U_i\right)^{a_i-(p+1)/2},

on the understanding that \sum_{i=1}^{r+1}U_i=I_p.

Theorems

= generalization of chi square-Dirichlet result=

Suppose S_i\sim W_p\left(n_i,\Sigma\right),i=1,\ldots,r+1 are independently distributed Wishart p\times p positive definite matrices. Then, defining U_i=S^{-1/2}S_i\left(S^{-1/2}\right)^T (where S=\sum_{i=1}^{r+1}S_i is the sum of the matrices and S^{1/2}\left(S^{-1/2}\right)^T is any reasonable factorization of S), we have

:

\left(U_1,\ldots,U_r\right)\sim D_p\left(n_1/2,...,n_{r+1}/2\right).

= Marginal distribution=

If \left(U_1,\ldots,U_r\right)\sim D_p\left(a_1,\ldots,a_{r+1}\right), and if s\leq r, then:

:

\left(U_1,\ldots,U_s\right)\sim D_p\left(a_1,\ldots,a_s,\sum_{i=s+1}^{r+1}a_i\right)

=Conditional distribution=

Also, with the same notation as above, the density of \left(U_{s+1},\ldots,U_r\right)\left|\left(U_1,\ldots,U_s\right)\right. is given by

:

\frac{

\prod_{i=s+1}^{r+1}\det\left(U_i\right)^{a_i-(p+1)/2}

}{

\beta_p\left(a_{s+1},\ldots,a_{r+1}\right)\det\left(I_p-\sum_{i=1}^{s}U_i\right)^{\sum_{i=s+1}^{r+1}a_i-(p+1)/2}

}

where we write U_{r+1} = I_p-\sum_{i=1}^rU_i.

=partitioned distribution=

Suppose \left(U_1,\ldots,U_r\right)\sim D_p\left(a_1,\ldots,a_{r+1}\right) and suppose that S_1,\ldots,S_t is a partition of \left[r+1\right]=\left\{1,\ldots r+1\right\} (that is, \cup_{i=1}^tS_i=\left[r+1\right] and S_i\cap S_j=\emptyset if i\neq j). Then, writing U_{(j)}=\sum_{i\in S_j}U_i and a_{(j)}=\sum_{i\in S_j}a_i (with U_{r+1}=I_p-\sum_{i=1}^r U_r), we have:

:

\left(U_{(1)},\ldots U_{(t)}\right)\sim D_p\left(a_{(1)},\ldots,a_{(t)}\right).

=partitions=

Suppose \left(U_1,\ldots,U_r\right)\sim D_p\left(a_1,\ldots,a_{r+1}\right). Define

:U_i=

\left( \begin{array}{rr}

U_{11(i)} & U_{12(i)} \\

U_{21(i)} & U_{22(i)}

\end{array} \right) \qquad i=1,\ldots,r

where U_{11(i)} is p_1\times p_1 and U_{22(i)} is p_2\times p_2. Writing the Schur complement U_{22\cdot 1(i)} = U_{21(i)} U_{11(i)}^{-1}U_{12(i)} we have

:

\left(U_{11(1)},\ldots,U_{11(r)}\right)\sim D_{p_1}\left(a_1,\ldots,a_{r+1}\right)

and

:

\left(U_{22.1(1)},\ldots,U_{22.1(r)}\right)\sim D_{p_2}\left(a_1-p_1/2,\ldots,a_r-p_1/2,a_{r+1}-p_1/2+p_1r/2\right).

See also

References

A. K. Gupta and D. K. Nagar 1999. "Matrix variate distributions". Chapman and Hall.

{{statistics-stub}}

{{Probability distributions}}

Category:Probability distributions